
Cambricon-U: A Systolic Random Increment Memory
Architecture for Unary Computing

Hongrui Guo
SKLP, ICT, CAS UCAS
guohongrui21b@ict.ac.cn

Yongwei Zhao
SKLP, ICT, CAS

zhaoyongwei@ict.ac.cn

Zhangmai Li
SKLP, ICT, CAS HUST
lizhangmai@hust.edu.cn

Yifan Hao∗
SKLP, ICT, CAS

haoyifan@ict.ac.cn

Chang Liu
SKLP, ICT, CAS UCAS
Cambricon Technologies
liuchang18s@ict.ac.cn

Xinkai Song
SKLP, ICT, CAS

songxinkai@ict.ac.cn

Xiaqing Li
SKLP, ICT, CAS

lixiaqing@ict.ac.cn

Zidong Du
SKLP, ICT, CAS SHIC
duzidong@ict.ac.cn

Rui Zhang
SKLP, ICT, CAS

zhangrui@ict.ac.cn

Qi Guo
SKLP, ICT, CAS
guoqi@ict.ac.cn

Tianshi Chen
Cambricon Technologies
tchen@cambricon.com

Zhiwei Xu
SKLP, ICT, CAS UCAS

zxu@ict.ac.cn

ABSTRACT
Unary computing, whose arithmetics require only one logic gate,
has enabled efficient DNN processing, especially on strictly power-
constrained devices. However, unary computing still confronts the
power efficiency bottleneck for buffering unary bitstreams. The
buffering of unary bitstreams requires accumulating bits into large
bitwidth binary numbers. The large bitwidth binary number needs
to activate all bits per cycle in case of carry propagation. As a
result, the accumulation process accounts for 32%-70% of the power
budget.

To push the boundary of power efficiency, we propose
Cambricon-U, a systolic random increment memory architecture
featuring efficient accumulation. By leveraging skew number data
format, Cambricon-U only activates nomore than three bits (instead
of all bits) from each number per accumulating cycle. Experimental
results show that Cambricon-U reduces 51% power on unary accu-
mulation, and improves 1.18-1.45× energy efficiency over uSystolic,
the SOTA unary computing scheme baseline, with -1.9%∼+0.77%
area overhead.

CCS CONCEPTS
• Computer systems organization→ Architectures; • Hard-
ware→ Emerging architectures.

∗Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0329-4/23/10. . . $15.00
https://doi.org/10.1145/3613424.3614286

KEYWORDS
skew number; systolic array; unary computing;
ACM Reference Format:
Hongrui Guo, Yongwei Zhao, Zhangmai Li, Yifan Hao, Chang Liu, Xinkai
Song, Xiaqing Li, Zidong Du, Rui Zhang, Qi Guo, Tianshi Chen, and Zhiwei
Xu. 2023. Cambricon-U: A Systolic Random IncrementMemory Architecture
for Unary Computing. In 56th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO ’23), October 28–November 01, 2023, Toronto,
ON, Canada. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3613424.3614286

1 INTRODUCTION
Recently, unary computing has re-emerged as a high power and
area efficient alternate to conventional binary computing for pro-
cessing deep neural networks (DNNs) inference on strictly power-
constrained IoT devices [9, 30, 31, 37, 43, 53]. The high efficiency of
unary computing comes from its simple data format and therefore
simple arithmetics. Unary computing encodes binary data into 1-bit
data streams (i.e., bitstreams) [15], significantly reducing the power
consumption of data read/write. Meanwhile, computing with the
unary bitstreams requires simple arithmetic processing unit (e.g.,
one AND or XNOR gate), avoiding the costly binary arithmetic units
(e.g., 16-bit multipliers). Recent works leverage such simplicity for
high compact hardware implementations with high computational
parallelism and data reuse ratio [46, 55].

However, even if such computational simplicity reaches its ceil-
ing, it cannot break through the power bottleneck caused by the
complex buffering of unary bitstreams. As evidence, for state-of-
the-art unary computing accelerator uSystolic [55], the buffering of
unary bitstreams occupies 58%-78% of a unary systolic array (Fig-
ure 1) and 32%-70% of the total power consumption (Figure 4). The
reason behind is that the buffering of a unary bitstream requires it
to accumulate bit by bit into a large bitwidth binary number. Dur-
ing such unary accumulation, the binary number needs to activate
all bits per cycle in case of carry propagation (i.e., each bit of the

424

https://doi.org/10.1145/3613424.3614286
https://doi.org/10.1145/3613424.3614286
https://doi.org/10.1145/3613424.3614286
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613424.3614286&domain=pdf&date_stamp=2023-12-08

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Guo et al.

PH

PH

IREG

WREG

MUL ACC

PE PE PE

PE PE PE

PE PE PE

58% 58% 78%

Figure 1: Breakdown of power in a unary systolic array
(WS: Weight-stationary; IS: Input-stationary; OS: Output-
stationary). Each PE contains a weight register (WREG), an
input register (IREG), a unary multiplier (MUL) and an accu-
mulator (ACC) for buffering unary bitstreams. ACC accounts
for 58%, 58%, and 78% power of the array, respectively.

number may flip due to the ripple of carries from LSB to MSB).
For example, the carries during accumulating ‘1’ (from a unary
bitstream) onto (the binary number) ‘01111b’ will flip all 5-bits. To
handle this case, the full-bitwidth adder (which requires activating
all bits of the operator) is needed for unary accumulation, thus
incurring large power overhead.

To break through the power bottleneck, we propose a systolic
random increment memory architecture (Cambricon-U), which
features efficient accumulation when buffering unary bitstreams.
On the one hand, the storage module of Cambricon-U is the RIM
array, which buffers unary bitstreams from PEs into skew numbers
(i.e., a non-standard ternary data format where at most one ‘2’ can
appear in a digit). Specifically, when accumulating one bit of a
unary bitstream into the RIM, unlike the binary number that needs
to activate all bits, the skew number only needs to activate the
least significant bit or the adjacent bits of ‘2’ (i.e., no more than
3-bits), so that heading off the carry propagation. Therefore, by
leveraging the skew number data format, the full-bitwidth adder
can be replaced by a half-adder without sacrificing execution time,
thus significantly reducing power consumption. On the other hand,
the calculation module of Cambricon-U is a systolic PE array that
can fully utilize the accumulation efficiency of RIM. Specifically, the
PE array is not only responsible for unary arithmetic operations,
but also for offsetting the accumulated digit values from ‘-1,0,+1’ to
‘0,+1,+2’, thereby avoiding unary subtraction in RIM. Additionally,
multiple PEs share a Converter that converts the skew number
(read out from RIM) to the binary number, serving as an interface
between the Cambricon-U core and external storage. Moreover, in
order to further clarify the efficient unary accumulation mechanism
in the Cambricon-U, as a supplement to the architecture design, we
also conducts a detailed circuit design and simulation of the RIM.

We conduct experiments to evaluate Cambricon-U against
uSystolic [55] under versatile configurations, including rate and
temporal-coding schemes, ranging from 32 to 2048 MAC cycles, as
well as typical dataflows such asWS, IS, and OS, onMLPerf-Tiny [4]
benchmarks. The RIM is evaluated through detailed circuit design
and simulation. Experimental results show that RIM reduces the
power of accumulation by 51%. The energy efficiency of Cambricon-
U is improved 1.18-1.45× over uSystolic, with only -1.9%∼+0.77%
area overhead.

This paper makes the following contributions:
• We demonstrate buffering unary bitstreams by accumulating
bits to large bitwidth binary numbers is the power bottleneck
in contemporary unary computing architectures due to the
full bitwidth activation in case of carry propagation.

• We propose Random Increment Memory (RIM) which accu-
mulates unary bitstreams to skew numbers for power efficient
accumulation where no more than three bits are activated
per cycle.

• We propose Cambricon-U, a unary computing architecture
leveraging RIM for buffering unary bitstreams, which im-
proves energy efficiency with minimal area overhead.

• We evaluate Cambricon-U in the context of power-
constrained devices on DNN benchmarks from MLPerf-
Tiny [4], and demonstrates the effectiveness of the skew
format buffering to reduce energy consumption.

The rest of the paper is organized as follows: Section 2 introduces
the basics of unary computing and uSystolic, the state-of-the-art
unary computing architecture. Section 3 analyzes the power bot-
tleneck of contemporary unary computing architectures. Section 4
presents the structure and functions of RIM. Section 5 presents the
architecture of Cambricon-U. Section 6 describes the detailed cir-
cuit design of RIM. Section 7 describes the evaluation methodology
and presents the experimental results of Cambricon-U. Section 9
discusses the related works, and Section 10 gives the conclusions.

2 BACKGROUND
In this section, we review the basic concepts of unary computing
and state-of-the-art unary computing architectures.

2.1 Unary Computing
By representing numbers as unary bitstreams, unary computing
enables low power multiplication with simple logic gates. After mul-
tiplication, unary-binary conversion occurs between consecutive
DNN layers.

2.1.1 Unary Representations. The representation of a number us-
ing a unary bitstream can be achieved through two coding schemes,
namely rate-coding and temporal-coding, as shown in Figure 2.
The first scheme, known as rate-coding or stochastic comput-
ing [2, 15, 35], utilizes the frequency of 1s to represent a number.
In this scheme, the frequency of 1s, denoted as 𝑃 , can be translated
into a number in two ways corresponding to two unary bitstream
formats: unipolar or bipolar [6]. The unipolar format represents an
unsigned number within the range of [0, 1] as 𝑃 , while the bipolar
format represents a signed number within the range of [−1, 1] as
2𝑃 − 1 [29]. Both formats require a stochastic number generator

425

Cambricon-U: A Systolic Random Increment Memory Architecture for Unary Computing MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

SRC
4,4,4,4,4,4,4,4

01101010

3,7,6,1,5,3,5,2
RNG

CMP

(a) Rate-coding

SRC
4,4,4,4,4,4,4,4

00001111

0,1,2,3,4,5,6,7
CNT

CMP

(b) Temporal-coding

Figure 2: The two coding schemes of unary representations.
A unary bit is generated by comparing SRC with either a
random number from a random number generator (RNG)
in (a) rate-coding or a number from a counter (CNT) in (b)
temporal-coding.

(SNG) [33] to generate bitstreams. The stochastic number generator
is comprised of three distinct components: a random number gen-
erator (RNG), a source register, and a comparator. The comparator
compares the value of the source register and a random number to
generate one bit per cycle. This process is repeated until the desired
number of bits is reached.

The second scheme is temporal-coding, also known as race-
logic [36, 39, 40, 52], which represents a number based on the tran-
sition timing of a signal. In this scheme, a temporal-coded bitstream
always contains consecutive 1s followed by consecutive 0s. Unlike
rate-coding which uses RNGs to generate bitstreams, temporal-
coding replaces RNGs with counters [9, 17, 48, 49], which reduces
the power overhead of unary bitstream generation. Additionally,
temporal-coding allows for efficient bitstream generation from ana-
log signals, making it more suitable for near-sensor computing
applications [53]. In this paper, both rate-coding and temporal-
coding are evaluated in order to identify the power bottleneck of
current unary computing architectures and to compare with ours.

2.1.2 Unary Arithmetic Operations. A unary GEMM operation is
composed of multiplications and additions. Multiplication is per-
formed in unary computing employing elementary logic gates,
specifically an AND gate for unipolar format and an XNOR gate
for bipolar format, as shown in Figure 3. Within this framework,
the AND gate is more preferable to researchers for two reasons.
First, the AND gate is notably less expensive than the XNOR gate,
with lower power dissipation during multiplication. Second, the
AND gate exhibits superior accuracy over the XNOR gate, which fre-
quently produces large errors when operands approach zero [56, 57].
Although the AND gate is notably simpler and more precise than
the XNOR gate, it is restricted on unsigned numbers. Thus, re-
searchers tend to execute one inner product via two rounds, one for
positive results and another for negative results [31, 44, 46], either
in parallel or serial. In an effort to mitigate the double execution
overhead, [54] recommends an innovative approach that executes
precise multiplication operations within a solitary round, effectively
reducing the double time or power overhead. Although this repre-
sents a significant advancement, achieving a one-round AND gate
multiplier results in greater complexity of the accumulator, thereby
increasing the power overhead required for accumulation [55].

Addition is another vital operation in the context of unary
GEMM, where it facilitates the combination of multiple bitstreams.
When summing two bitstreams, either a multiplexer (MUX) [42] or
an OR gate [12] can be employed. Specifically, the MUX operates
by performing a scaled addition, denoted as𝑀𝑈𝑋 (𝑃1, 𝑃2) = (𝑃1 +

01100101
00000101

10010101 CMPAND
P1=1/2 V1=P1=1/2

P=1/4
V=P=1/4P2=1/2 V2=P2=1/2

(a) Unipolar

00101011

11000110

00010010

P1=1/2 V1=2P1-1=0

P=1/2
V=2P-1=0P2=1/4 V2=2P2-1=-1/2

XNOR

(b) Bipolar

Figure 3: Unary multiplication of (a) unipolar and (b) bipolar
formats of unary bitstreams, where 𝑃 is the probability of bit
1s. An AND gate is used to multiply two unipolar bitstreams,
and an XNOR gate is used to multiply two bipolar bitstreams.

𝑃2)/2, using two input operands 𝑃1 and 𝑃2. For 𝑛-input operands,
an 𝑛-input MUX is utilized to perform an addition that is scaled by a
factor of 𝑛, resulting in𝑀𝑈𝑋 (𝑃1, 𝑃2, ..., 𝑃𝑛) = (𝑃1 + 𝑃2 + ... + 𝑃𝑛)/𝑛.
However, the large scaling factor 𝑛 restricts the applicability of
MUX addition to narrow widths [12]. Furthermore, to achieve ad-
equate accuracy in practical DNNs, it is necessary to integrate
neurons with inputs numbering in the hundreds or thousands,
making MUX additions unsuitable. Alternative OR gate-based addi-
tions are free of scaling factors but experience systematic errors,
with 𝑂𝑅(𝑃1, 𝑃2) = 𝑃1 + 𝑃2 − 𝑃1𝑃2 giving rise to errors that can-
not be disregarded when 𝑃1𝑃2 is relatively large [46]. Moreover,
the OR gate-based addition method is further affected by satura-
tion, which decreases accuracy. What is worse, the above addition
methods are designed specifically for rate-coding, whose accuracy
highly relies on the correlation [1] between the input bitstreams,
thus failing to cater for accurate addition of temporal-coded bit-
streams [54]. Because of the limitations of unary additions, it is
necessary to perform addition in binary domain by accumulating
1s accurately [9, 17, 48, 49, 55].

2.1.3 Unary-Binary Conversion. The unary-binary conversion oc-
curs at the start and end of the execution of one DNN layer. The
conversion from binary to unary format is achieved by applying
unary stream generators, which utilize a RNG in rate-coding and a
counter in temporal-coding. Conversely, the conversion from unary
to binary format is typically executed using binary accumulators
in light of the inaccuracy of unary adders. Based on the unary mul-
tiplication result’s sign and absolute value, the binary accumulator
adjusts the accumulated value by incrementing, decrementing, or
maintaining it [55]. Specifically, given the multiplication result’s
sign as 𝐴 and the produced multiplication bit as 𝐵, the accumulator
modifies the sum 𝑆 according to Equation 1 where 𝐴 = 0 and 𝐴 = 1
represents positive and negative, respectively.

𝑆𝑖+1 =

𝑆𝑖 + 1, 𝐴𝑖 = 0, 𝐵𝑖 = 1
𝑆𝑖 − 1, 𝐴𝑖 = 1, 𝐵𝑖 = 1
𝑆𝑖 , 𝑜 .𝑤 .

(1)

2.2 uSystolic
uSystolic [55], the state-of-the-art unary computing architecture,
leverages a unary systolic array which comprises a unary PE array
and peripheral components (PH), as shown in Figure 1. In the
unary PE array, each PE is composed of four components: weight
registers (WREG), input registers (IREG), a unary multiplier (MUL)
and an accumulator (ACC) for the buffering of unary bitstreams.
While all dataflows employ a costly large-bitwidth adder for unary

426

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Guo et al.

accumulation (ACC), the other three parts (WREG, IREG, and MUL)
are subtly different in various dataflows. In the case of weight
stationary (WS) dataflow, the WREG comprises a random number
register, a weight absolute value register, and a weight sign register,
while the IREG is made up of an input sign register and a D-flipflop
(DFF) buffering one unary bit of an input. The MUL consists of a
comparator (CMP) to generate one unary bit of weight per cycle,
an AND gate utilized for unary multiplication and an XOR gate
that computes the sign. The bitwidth of WREG and CMP can be
8-bit or 16-bit to support different resolutions. In the case of input-
stationary (IS) dataflow, the structure of a PE is akin to that of WS
dataflow, with the only difference being the interchange of weight
and input. As for output stationary (OS) dataflow, both the WREG
and IREG are constituted by a sign register and a DFF buffering one
unary bit. The MUL in OS dataflow only comprises an AND gate
and an XOR gate.

The peripheral components (PH) include unary stream genera-
tors (UBGs), random number generators (RNGs) and FIFOs. In WS
and IS dataflow, the PH on the left side of the unary systolic array
consists of a single column of FIFOs and UBG-RNG pairs. Each row
of PEs share one pair of UBG and RNG. On the other hand, the
PH on the top of the systolic array consists of only FIFOs. In OS
dataflow, both the PHs consist of one column/row of FIFOs and
UGBs, with each UGB shared by one row/column of PEs. Overall,
the PHs play a crucial role in ensuring efficient data reuse and
synchronization across the systolic array.

The unary systolic array operates similarly to a binary systolic
array [23, 47]. First, if necessary, relevant data are preloaded into
the PEs and remain static until the output feature maps are calcu-
lated. For example, in WS dataflow, the weights are flowed into
weight registers of each PE before computing. The UBGs or RNGs in
peripheral components then generate unary bitstreams or random
numbers, which are fed to the systolic array and reused by multiple
PEs. The reuse of unary bitstreams or random numbers allows lo-
cating unary stream generators only at the peripheral components,
amortizing the power and area overhead among one line of PEs.
As the unary bitstreams or random numbers are streamed in the
systolic array, the ACC in each PE accumulates the unary bitstream
generated by the multiplier.

3 MOTIVATION
Recent architectures only focus on leveraging simple data format
and simple arithmetics for accelerating unary computing. For in-
stance, [49] eliminates the AND gate for unary multiplication and
gains higher compact hardware implementations. SkippyNN [17]
and DPS [48] focus on reducing MAC cycles with higher computa-
tional parallelism. uSystolic [55] pays attention to more efficient
data reuse to amortize the power of random number generators
across PEs.

Although previous work has fully leveraged the simplicity of
unary arithmetic, the hardware power efficiency is still hindered
by the extensive unary accumulations when buffering unary bit-
streams. As evidence, unary accumulations in the buffering of unary
bitstreams (shown in the orange color legend ‘ACC’ in Figure 4)
occupy the largest portion (32%-70%) of the total power consump-
tion in all evaluation scenarios, including rate and temporal-coding

0

1

2

32
-8

b

dscnn

0

5

mobilenet

0.00

0.25

0.50

resnet

0.0

0.2

deepauto

0

2

4

64
-8

b

0

10

0.0

0.5

1.0

0.00

0.25

0.50

0

5

10

12
8-

8b

0

20

0

1

2

0.0

0.5

1.0

0

10

20

25
6-

16
b

0

50

0.0

2.5

5.0

0

2

0

20

40

51
2-

16
b

0

100

0

5

10

0.0

2.5

5.0

0

50

100

10
24

-1
6b

0

200

0

10

20

0

5

10

WS-U
R

WS-U
T
IS-

UR
IS-

UT
OS-U

R
OS-U

T
0

100

200

20
48

-1
6b

WS-U
R

WS-U
T
IS-

UR
IS-

UT
OS-U

R
OS-U

T
0

250

500

WS-U
R

WS-U
T
IS-

UR
IS-

UT
OS-U

R
OS-U

T
0

20

40

WS-U
R

WS-U
T
IS-

UR
IS-

UT
OS-U

R
OS-U

T
0

10

20

En
er

gy
 (m

J)

ACC WREG IREG MUL PH SRAM

Figure 4: The breakdown of energy utilization of unary
systolic array architectures under rate (UR) and temporal-
coding (UT) schemes, ranging from 32 to 2048 MAC cycles
(the -8b and -16b indicate the 8 and 16 bits for two multiplica-
tion inputs), as well as typical dataflows such as WS, IS, and
OS.

schemes, ranging from 32 to 2048 MAC cycles, as well as typical
dataflows such as WS, IS, and OS.

To explain this power bottleneck caused by unary bitstream
buffering, we would clarify two questions: 1) why buffering unary
bitstreams requires extensive unary accumulations, and 2) why
unary accumulations bring large power consumption overhead.

The answer to question 1) is that, to save the memory capac-
ity of buffering a unary bitstream, it is necessary to accumulate
it bit by bit into a large bitwidth binary number. Specifically, as
the unary bitstream typically includes hundreds or even thousands
of bits, buffering these bits requires large memory capacity, thus
causing high power and area overhead. On the contrary, if accumu-
lating an 𝑁 -bit unary bitstream into a binary number and only the
binary number is buffered, the memory overhead only needs no
more than 𝐿𝑜𝑔2𝑁 bits. For example, a 256-bit unary bitstream can
be accumulated into an 8-bit binary number, saving 32× memory
overhead.

The answer to question 2) is that, the unary accumulation suffers
from the carry propagation, thus requiring a costly full-bitwidth
adder. Specifically, when accumulating ‘1’ from a unary bitstream
onto a binary number, each bit of the binary number may be added
with a carry, flipping and generating a new carry for the next
bit. As a result, these carries may propagate from LSB to MSB (i.e.,
namely carry propagation), and cause a full-bit-flipping of the binary
number. For example, when accumulating ‘1’ onto ‘01111b’, carries
will flip all five bits. In case of carry propagation, unary accumulation

427

Cambricon-U: A Systolic Random Increment Memory Architecture for Unary Computing MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

WBIT
IBIT

MUL

WSIGN
ISIGN

H
A

D
FF

To RIM

S

C

❶ ❷ ❸

Skew
Cell

Skew
Cell

Skew
Cell

Skew
Cell

Skew
Cell

Skew
Cell

Skew
Cell

Skew
Cell

Skew
Cell

Skew
Cell

Skew
Cell

Skew
Cell

Comp.
Unit

Comp.
Unit

Comp.
Unit

Se
n

se A
m

p
. &

 W
rite D

rivers

From PE From PE From PE

PE

RIM

PE PE PEPE

PE PE PE PEPE

PE PE PE PEPE

RIM

RIM

P
H

PH

CVT

CVT

CVT

Figure 5: The Cambricon-U architecture (middle) which integrates RIM (left) with a novel PE (right) that transforms accumula-
tion to increment.

needs to activate all bits of the binary number, so it needs to be
implemented on a full-bitwidth adder, which causes the large power
dissipation of the accumulator. As Figure 1 shows, for all typical
dataflows (i.e., WS, IS, and OS), the accumulator in a PE accounts
for the largest power consumption (shown in the light gray color
legend ‘ACC’), which is 3.1-13.3× of the other components. Such a
significant power consumption gap between different parts is due
to the complexity difference of their corresponding circuit (i.e., a
costly full-bitwidth adder v.s. other components, only consisting of
simple logic gates, narrow bitwidth registers, and comparators).

In short, given that buffering unary bitstreams in a memory
saving manner inevitably requires extensive unary accumulations,
to push the power efficiency boundary of unary computing ar-
chitectures, a dedicated hardware design for accelerating unary
accumulations is urgently called for.

4 RANDOM INCREMENT MEMORY
To break through the power bottleneck of unary computing, we
propose Random Increment Memory (RIM) for efficient unary accu-
mulations.

4.1 Structure
RIM is mainly comprised of skew cells and computation units for
power-efficient increment of skew numbers, as shown on the left of
Figure 5.

4.1.1 Skew Cell. RIM leverages skew cells to memorize skew num-
bers. The skew number system [13, 38] is a non-standard positional
system where the weight of the 𝑛-th digit is 2𝑛+1 − 1. The key
difference between the skew number system and the binary num-
ber system is that at most one ‘2’ can appear in a skew number.
Therefore, each skew cell is designed to memorize one of three
values : ‘0’, ‘1’ or ‘2’. Besides memorization, each skew cell can
also activate appropriate skew cells in the increment process. As a
result, the acceleration core performs calculation in unary format
and accumulation in skew format, while the uncore part, including
the memories for input/output feature maps and weights, can keep
using traditional binary format.

0 1

0 0

0 0

0 0

0 0

0 0

1 0

0 0

0 0

0 0

0 0

0 0

000001 + 1 = 000002

0 0

1 0

0 0

0 0

0 0

0 0

0 0

0 0

0 1

0 0

0 0

0 0

000020 + 1 = 000100

0 0

1 0

0 1

0 0

0 0

0 0

0 0

0 0

1 0

0 0

0 0

0 0

000120 + 1 = 000200

LSB

MSB

Example 1 Example 2 Example 3

Figure 6: Examples of the increment of a skew number. The
flipped bits are annotated. At most three bits are flipped in
one increment step.

4.1.2 Computation Unit. The increment of skew numbers only
needs to activate no more than 3 bits, thus heading off the carry
propagation. The increment of skew number operates depending
on whether a ‘2’ exists in the skew number. If the skew number does
not contain a ‘2’, the least significant digit of the skew number is
incremented. As the resultant least significant digit is still no more
than ‘2’, no carry bit will propagate to the next digit. As shown in
the Example 1 in Figure 6, increment a skew number ‘000001’ leads
to ‘000002’, where only two bits are flipped. If the skew number
does contain a ‘2’, the only ‘2’ will be cleared to ‘0’ and the next
digit of the ‘2’ is incremented. In this case, because the ‘2’ is unique
in the skew number, the next digit of the ‘2’ still cannot exceed
‘2’ after increment, thus also cutting off the carry propagation. As
the Example 2 and 3 in Figure 6 show, the increment of a skew
number containing a ‘2’ only needs to flip two or three bits. Overall,
both circumstances only need to activate at most three bits in an
increment step, no matter the bitwidth of the skew number.

As a result, the computation units only need a half-adder instead
of a full-bitwidth adder for increment, thereby considerably reduc-
ing power consumption. In one increment step of a skew number,
only one digit is activated to be incremented. The incremented
digit is ‘0’ or ‘1’, as the unique ‘2’ will not activate itself, according
to the rules of skew increment. Therefore, the increment only in-
volves two kinds of computation: ‘0+1’ and ‘1+1’. Both ‘0+1’ and

428

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Guo et al.

‘1+1’ can be accomplished by a half-adder instead of a full-bitwidth
adder. The half-adder is comprised of only two logic gates, while
the costly full-bitwidth adder consists of tens or even hundreds of
gates, which consumes much more power than a half-adder.

4.2 Functions
4.2.1 Increment. RIM is mainly designed to perform efficient in-
crement on the skew numbers selected by bits from PEs. As shown
in the left of Figure 5, ❶ RIM accepts a line of bits, which indicate
which skew numbers are to be incremented. ❷ Each skew num-
ber then activates one of its skew cells according to the position
of ‘2’. Different skew numbers can activate skew cells at different
positions at the same time. ❸ The activated skew cells are then
incremented by the computation units at the top line of RIM. ❹ At
last, the ‘2’s, if any, adjacent to the activated skew cells are cleared
to zero. The skew increment is more efficient than a binary incre-
ment, in that only skew cells and the ‘2’s (instead of all bits) are
activated in each increment step, overcoming the carry-propagation
of the binary increment. Experiments show the skew increment can
save 51% energy of traditional binary accumulation, by modeling
the power of RIM accumulator and binary accumulator using SPICE
and ICC2, respectively (See Section 7.1).

4.2.2 Parallel Read-Out. Each RIM also supports to read out all
bits of one skew number and clear it to zero in one cycle. When
a unary bitstream has completed accumulating to a skew number,
all bits of the skew number can be read out to the sense amplifiers
at the right side of RIM. The reason of incorporating the read-out
function in RIM is that the skew numbers belonging to the same
RIM do not finish accumulation at the same cycle. That is, in one
cycle, a skew number is read out while the others can still be in
the process of accumulation. The coexistence of reading-out and
accumulation allows preserving the dataflow of the unary systolic
array architectures, thus inheriting the benefits such as generality,
spatial-temporal reuse, early termination support, etc [55].

5 CAMBRICON-U ARCHITECTURE
5.1 Overview
Figure 5 depicts Cambricon-U’s overall architecture, which is an
array of RIMs integrated with a unary systolic array to fully uti-
lize the accumulation efficiency of RIMs. Specifically, the PEs are
designed to transform accumulation to increment. The peripheral
components (PHs) on the left and top of the systolic array are the
same as those in unary systolic array architectures, as shown in
Figure 1. On the right side of the systolic array is a column of con-
verters serving as an interface between the Cambricon-U core and
external storage.

In the rest of this section, we first introduce how PE is designed
to fully give into play the low power increment of RIM. Then we
show the converter which converts a skew number to a binary
number to avoid additional memory access and capacity brought
by the larger bitwidth of a skew number. Finally, we explain how
to address the scalability issue of Cambricon-U.

PC LR
EG

SK
EW

-R
EG

A
D

D SU
B

SU
B

<<1

even bits

odd bits

0

0

1

0

0

1

0

0

From RIM

❶ ❷ ❸ ❹

Figure 7: The converter that converts a skew number read
out from RIM to a binary number. The converter consists
of a skew-number register (SKEW-REG), a bitstream length
register (LREG), a parallel counter (PC) to sum up the values
of skew-cells, which can be 0,1,or 2, an adder (ADD) and two
subtractors (SUB).

5.2 PE
As RIM can only perform increment, the PE should be designed to
transform accumulation to increment. The accumulated digit values
can be ‘-1,0,+1’ in each accumulation step, while the RIM only ac-
cepts ‘0,+1’. To bridge the gap between accumulation to increment,
two steps should be taken by each PE. Firstly, the accumulated digit
values are offset by ‘1’ to avoid subtraction. Specifically, the ‘-1,0,+1’
values are replaced by ‘0,+1,+2’. Secondly, to transform the ‘0,+1,+2’
to ‘0,+1’, each PE maintains 1-bit state to ensure that only 1-bit is
transferred to RIM per cycle.

The transformation can by accomplished by simple hardware,
as shown in the right of Figure 5. In Figure 5, the transformation
module is comprised of three parts. The first part is the unary mul-
tiplier which generates the multiplication result in sign-magnitude
format [57], which contains one bit for sign (SIGN) and one bit for
the absolute value (MUL). The two bits are fed to the second part,
which generates one of ‘0,+1,+2’ according to the value encoded
by SIGN and MUL. Finally, the third part generates 1-bit to RIM
given the 2-bits from the second part. The reduction in the number
of bits is achieved by incorporating 1-bit state inside the PE. The
1-bit state consists a half-adder and a D-flipflop (DFF). The DFF is
updated by the output of the half adder. The carry bit generated
by the half adder is OR-ed with the high bit of the ‘0,+1,+2’ from
the second part. The output of the OR gate is then transferred to
the RIM. Note that transforming accumulation to increment leads
to the value offset by the length of accumulated bits, so the skew
numbers inside a RIM should subtract the length of accumulated
bits to restore their original values.

5.3 Converter
Figure 7 depicts the design of a converter that converts a skew
number to a binary number, in order to avoid additional memory
access and capacity. As a skew number has as twice bitwidth as a
binary number, the external memory access and capacity will be
doubled if storing numbers in skew format. To avoid such overhead,
a converter is designed to transform a skew number to a binary

429

Cambricon-U: A Systolic Random Increment Memory Architecture for Unary Computing MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

number in four steps: ❶ An adder adds up the even bits (the high
bit of a skew cell) and odd bits (the low bit of a skew cell) of a
skew number, and append a ‘0’ to the LSB of the sum. ❷ A parallel
counter (PC) counts the number of 1s in the skew number, where
a ‘2’ accounts for two 1s. ❸ A subtractor subtracts the number of
1s from the addition result, and generates the binary format num-
ber corresponding to the read-out skew number. ❹ The generated
binary number should subtract the length of accumulated bits in
order to eliminate the influence of the transformation from accu-
mulation to increment. The length of accumulated bits is a static
value, such as the length of a unary bitstream, which can be known
before the execution of a DNN layer. As a result, the length register
(LREG) can be set only when beginning to execute a DNN layer,
and can be overlapped with the unary bitstreams flowing in the
systolic array.

One converter can be shared by multiple PEs without contention,
thus amortizing the power overhead. Usually, a bitstream, which
is much longer than the number of PEs sharing a converter, is
streamed in the pipeline of these PEs. Due to the long length of the
bitstream, all of these PEs can be occupied by the same bitstream.
Therefore, it is impossible for the PEs sharing a converter to read
out two results from RIM at any cycle. As at most one PE per RIM
generates output at the same cycle, only one column of converters
are located at the right side of the systolic array, as shown in Figure 5.
Because the PEs per RIM share the same converter, the converters
add only 3% power overhead of each PE of an 8-bit 64×64 systolic
array. The data is obtained using ICC2 (See Section 7.1.2). The
low overhead of converters demonstrates that it is worthwhile to
convert skew numbers to binary numbers, avoiding doubling the
external memory access and capacity.

5.4 Scalability
As the read-out operation relies on shared buses, as in normal
SRAM, the number of columns in a RIM cannot be scaled infinitely,
thus limiting the horizontal scalability. The horizontal scalability
issue can be addressed through banking. Each bank can have mul-
tiple rows of PEs, but each row of a bank only has one RIM. The
multiple banks are splitted by pheripheral components, such as
sense amplifiers, write drivers, and additional registers and adders
(for WS and IS), but share the unary bitstream generators and RNGs.
The overhead of banking is small for two reasons. First, the bank-
ing only introduces simple hardware like adders and registers, not
including the costly unary bitstream generators. Second, the size of
the systolic array can still scale in the vertical direction. Therefore,
we choose banking for simplicity and efficiency.

The key to ensuring Cambricon-U can scale-up is to avoid RIM
contentions caused by sharing converters between PEs. In general,
to ensure accuracy, the length of a bitstream (e.g., 512 bits) is much
longer than the number of PEs (e.g., 32 PEs) sharing the same
converter, meaning that all the pipeline stages of the group of PEs
can be fully occupied by the bitstream. As a result, in one cycle,
the group of PEs only read out at most one skew number from
RIM, thus avoiding contention for RIM and ensuring scalability
friendliness.

Specifically, to further illustrate why Cambricon-U can avoid
contentions, we would clarify the sharing schemes of converters

under different dataflows, respectively. For WS and IS dataflow,
each RIM is equipped with one converter. When a PE has finished
processing the last bit of a unary bitstream, the accumulated value
(i.e., the multiplication result) is read out from the RIM to the sense
amplifiers at the right side of the bank in one cycle. Then the
read-out data is transformed to binary format by a converter and
accumulated by an adder to obtain the partial result of the inner-
product. For OS dataflow, each row of PEs share a converter, as the
bitstream of an inner-product is usually long enough to occupy all
PEs in a row. As a result, only the RIMs in the rightmost bank are
equipped with one column of converters, while other banks only
needs a column of registers instead of converters to stream out the
read-out data out of the acceleration core in a pipeline manner.

6 CIRCUIT-LEVEL DESIGN OF RIM
In this section, we describe the detailed circuit design of RIM and
the steps to perform one increment in RIM.

6.1 Implementation
RIM is composed of skew cells which consists of one SkewBit and
one DataBit, as Figure 8 shows. Besides a normal cell, the SkewBit
can activate neighbor skew cells. All bitcells are 8T SRAM cells
that support reading-out one column of bits in parallel, as in [22].
In a SkewBit, the TG and CMOS transistors constitute a two-level
selection of four HWL sources. The first level selects from𝐺𝑁𝐷 and
𝐴[𝑖 − 1], the activation signal from the last skew cell, by 𝐶1/𝐶1𝐵.
The 𝐺𝑁𝐷 is selected when pre-charging 𝐵𝐿/𝐵𝐿𝐵s, and 𝐴[𝑖 − 1] is
selected when performing computation. The second level selection
is controlled by𝐶2/𝐶2𝐵,𝐶3/𝐶3𝐵 and𝐶4. The signal selected by the
first level is also selected by the second level when 𝐶2/𝐶2𝐵 = 1/0
before the step when the ‘2’, if any, is cleared to zero. In this step,
𝐶3/𝐶3𝐵 or 𝐶4 selects a signal according to the number of ‘2’ in the
column. If there are two ‘2’s, the 𝐶3/𝐶3𝐵 selects 𝑇𝑄 [𝑖 + 1] to let
the next SkewBit activate the current one. If there is one ‘2’, the
𝐶4 selects 𝑉𝐷𝐷 to open the pass transistors of the bitcells of all
SkewBits. The only SkewBit storing a ‘1’ is then cleared to zero.

The NOR gate is used to avoid recurrent writing. The recurrent
writing would happenwhen a new ‘2’ is written to RIM, and the new
‘2’ would activate the next skew cell recurrently until the newly
written value is not ‘2’. To solve this issue, we utilize a NOR gate
to mitigate the recurrent activation signal, as shown in the right
bottom of Figure 8. The NOR gate takes the QB signal of the bitcell
of the current Skew-Bit, denoted as 𝑄𝐵 [𝑖], and the Q signal of the
bitcell of the last Skew-Bit, denoted as 𝑄 [𝑖 − 1], as inputs, and the
generated signal is 𝑁𝑂𝑅(𝑄𝐵 [𝑖], 𝑄 [𝑖 − 1]) = 𝐴𝑁𝐷 (𝑄 [𝑖], 𝑄𝐵 [𝑖 − 1]),
which means that only when the current SkewBit is ‘1’ and the last
SkewBit is ‘0’, the next SkewCell can be activated. The AND gate is
replaced by a NOR gate to reduce two CMOS transistors.

The Computation Unit is responsible for increment and control
signals generation (𝐶3/𝐶3𝐵, 𝐶4, and 𝐸𝑁𝐷), as shown in the left
top of Figure 8. The increment is performed by two SA/WDs. The
control signals 𝐵/𝐵𝐵 and𝑊𝐷𝐴𝑇𝐴/𝑊𝐸𝑁 control the increment
operation inside SA/WDs. When 𝐵 is ‘0’, the 𝐵𝐿/𝐵𝐿𝐵 cannot be
charged/discharged even if𝑊𝐸𝑁 is ‘1’. Otherwise, the 𝑆𝐵𝐿/𝑆𝐵𝐿𝐵
and 𝐷𝐵𝐿/𝐷𝐵𝐿𝐵 are charged/discharged by the two SA/WDs, ac-
cording to the latch. This avoids an explicit half-adder to reduce

430

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Guo et al.

Skew
Bit

Data
Bit

Skew
Bit

Data
Bit

Skew
Bit

Data
Bit

Data
Bit

Data
Bit

Data
Bit

Data
Bit

Data
Bit

Data
Bit

7 bits 7 bits 7 bits

Skew
Bit

Skew
Bit

Skew
Bit

Skew
Bit

Skew
Bit

Comp. Unit Comp. Unit Comp. Unit

Skew
Bit

Se
n

se
 A

m
p

lif
ie

r
&

 W
ri

te
 D

ri
ve

rs

WDATA

B

BB

WEN

PRE

REN

DOUT DOUTB

WDATA

B

BB

WEN

PRE

REN

DOUT DOUTB

AND

ANDAND

RS
Q

QB

S

R

A

B

Y

A

B

A

B

Y

Y

From PE

UPDATE

C4

C3 C3B

A[-1]BQ[-1]

END

4 bits

7 bits

VWLBL BLB BL BLB

C3/C4 Gen.

SA/WD SA/WD

CLE CLE

WEN CLE PRE REN

Comp. Unit

TG

TG
NOR

TG
Bitcell

C1B

C1

C2B

C2

C3B

C3

C4

TQ[i+1]

TQ[i]

A[i]

A[i-1]

BQ[i]

BQ[i-1]

A B

Y

HWL

Bitcell

V
W

L

V
W

L HWL

Skew Bit

Data Bit

Q

QB

SBL SBLB DBL DBLBVWL

BL[2*i]

BLB[2*i]

BL[2*i+1]

BLB[2*i+1]

Figure 8: The circuit-level design of RIM. To the middle: RIM Overview. To the left: Computation Unit. To the right: Skew Cell.

Precharge
Case 1 Case 2

Skew-Update

0 0

1 0

0 1

0 0

0 0

0 0

1 0

0 1

0 0

0 0

0 0

1 0

1 0

0 0

0 0

0 0

0 0

1 0

0 0

0 0

0 0

0 0

1 0

0 0

0 0

10 1 0
Comp.

Unit

UPDATE

C1

C1B

C2

PRE

WEN

REN

CLE

C2B

Skew
Cells

Skew-Read Skew-Write

Figure 9: The four steps of one RIM increment.

power consumption. The control signals generation is also achieved
by simple logic, as shown in the shadow part of the left top of Fig-
ure 8. Only five basic logic gates are leveraged to generate 𝐶3/𝐶3𝐵
and 𝐶4. Moreover, the 𝐸𝑁𝐷 signal, which indicates whether read-
ing out a column of bits, is generated by a D-flipflop whose value
is piped in from the leftmost Computation Unit. In addition, an RS
latch is placed beside the control signals generation logic to utilize
𝐶3 and𝐶4𝐵 as inputs to provide the inputs (𝐴[𝑖 − 1] and 𝐵𝑄 [𝑖 − 1])
of the first SkewBit.

6.2 Operation Steps
One increment in RIM has four steps: Pre-charge, Skew-Read, Skew-
Write, and Skew-Update, as shown in Figure 9. The first step, Pre-
charge, prepares to read data from RIM. In the Skew-Read step, the
‘2’ activates the next skew cell to the Computation Unit. Afterward,
the 𝐵𝐿/𝐵𝐿𝐵 is discharged for a while. Then, the 𝑅𝐸𝑁 signal is set
to ‘1’ and the sense amplifier senses the difference between 𝐵𝐿 and
𝐵𝐿𝐵 and stores the read value into a latch. Next, the Skew-Write
step is started by setting𝑊𝐸𝑁 to ‘1’ to increment the activated
skew cell and writes the new value back to RIM. Finally, the Skew-
Update step has two cases. First, if a new ‘2’ is written to RIM in
the Skew-Write step, the new ‘2’ activates the old ‘2’ and clears
it to zero. Second, if no new ‘2’ is generated, all bits are activated
to write zero, as the old ‘2’ cannot activate itself. Note that in this

case, only one bit is flipped, so the power is still acceptable. In both
cases, the𝑈𝑃𝐷𝐴𝑇𝐸 is set to ‘1’ and𝐶1/𝐶1𝐵 and𝐶2/𝐶2𝐵 are flipped.
Moreover, appropriate spaces are inserted to limit the short-circuit
current.

7 EVALUATION
In this section, we evaluate Cambricon-U with respect to energy
efficiency, power, area and application accuracy, and compare
Cambricon-U with various unary systolic array architectures.

7.1 Experimental Setup
7.1.1 Modeling of RIM. We use SPICE model to simulate a RIM
which contains 32 skew numbers (totally 1Kb, 16 digits or 32 bits
per skew number) under the FreePDK 45nm technology node [41],
using Nominal process corner and VTG devices. Using the Cadence
Virtuoso software, we design the circuit and layout of a RIM, with
DRC and LVS passed. We extract the parasitic parameters and per-
form post-layout simulation under 1.1V for accurate power statistics.
As shown in Figure 10, the RIM layout consists of the skew cells,
the computation units at the top and sense-amplifiers/write-drivers
at the right side. The excitation signals for simulation are generated
based on additional execution statistics from trace profiling. All
powers are obtained by integrating current over time.

The simulation results show that each skew number dissipates
39.0 uW on average when performing increment, and reading one
skew number out dissipates 664.3 uW on average. The static and
dynamic power/current of one increment are 0.32uW/0.29uA and
38.68uW/35.16uA, respectively. The layout of the RIM shows that it
has 1.04× 10−2𝑚𝑚2, equivalent to each skew number contributing
324.8 𝑢𝑚2 area. Although the area is a bit larger than that of an
accumulator, the power dissipation is only 41% (totally 49% plus
the modification of PE) of an accumulator because of the small
number of activated bits. Moreover, the simulation shows that the
frequency of increment and read-out can follow the frequency of
the systolic array, which operates at 400 MHz, the same frequency
as the uSystolic [55] baselines.

7.1.2 Hardware Configurations. The Cambricon-U architecture is
compared with uSystolic [55], the state-of-the-art unary computing
architecture, with respect to diverse coding schemes such as rate-
coding and temporal-coding, MAC cycles ranging from 32 to 2048

431

Cambricon-U: A Systolic Random Increment Memory Architecture for Unary Computing MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Table 1: Hardware Characteristic of Cambricon-U (OS-UR,
8-bit)

Area
(mm2)

(%) Static
Power
(mW)

Dynamic
Power
(mW)

Total
Power
(mW)

(%)

uSystolic 3.78 100 63.30 490.84 554.14 100
ACC 1.43 37.83 13.15 373.14 386.29 69.71
IREG 0.11 2.91 0.90 38.79 39.69 7.16
WREG 0.11 2.91 0.90 38.79 39.69 7.16
MUL 0.02 0.53 0.27 28.84 29.11 5.25
PH 0.02 0.53 0.18 8.01 8.19 1.48
SRAM 2.09 55.29 47.90 3.27 51.17 9.23

Cam-U modified -0.05 -1.32 -10.42 -162.43 -172.85 -31.19
ACC 1.23 -5.29 1.71 187.43 189.14 -35.58
CVT 0.10 +2.65 0.84 15.36 16.20 +2.92
PH 0.05 +1.32 0.36 15.93 16.29 +1.46

Cam-U 3.73 98.68 52.88 328.41 381.29 68.81

and dataflows includingWS, IS and OS. The hardware characteristic
of Cambricon-U is summarized in Table 1.

Cambricon-U: Other than RIM, the remaining parts in
Cambricon-U are implemented in Verilog RTL. The power and
area are synthesized using Synopsys Design Compiler and
Placed&Routed using Synopsys IC Compiler II under the FreePDK
45nm technology node [41] with Nominal process corner, VTG
cells, and 1.1V voltage. The Cambricon-U has a 64 × 64 unary PE
array operating at 400MHz, the same as the baselines. We leverage
SRAM buffers as the external memory of the acceleration core. The
SRAM energy and area are modeled using CACTI7 [3]. The sizes of

5
1

.6
0

u
m

177.15um

Comp. Units

SA
 &

 W
D

s

Skew Cells

(a) RIM

bitcellbitcell TG TG

NMOS

PMOS

TG

NOR

BQ[i-1] C4 C3 TQ[i] C3B SBLB SBL C2 C2B C1 C1B A[i-1] VWL DBLB DBL

BQ[i] A[i]TQ[i+1]

BLB[2*i+1]

BL[2*i+1]

BLB[2*i]

BL[2*i]

(b) Skew cell

Figure 10: The layout of (a) RIM and (b) Skew cell.

the SRAM buffers are selected according to the MLPerf-Tiny bench-
marks [4], with 64 KB for input buffer, 64 KB for output buffer and
512KB for weight buffer.

uSystolic: For the uSystolic baselines, we extend the uSystolic-
Sim [55] simulator to support input-stationary and output-
stationary dataflows. For the fairness of the comparison, we also
set the uSystolic baselines to have a 64× 64 PE array, with the same
capacity of SRAM buffers as Cambricon-U. The number of banks
and the line-width of each SRAM buffer is selected to minimize the
average energy consumption for each coding scheme, bitwidth and
dataflow. The frequency of uSystolic is 400 MHz, the same as [55].
The hardware power and area are obtained in the same way as
Cambricon-U.

7.1.3 Benchmarks. We evaluate Cambricon-U on the MLPerf-
Tiny [4] benchmarks. The benchmarks consist of four DNN mod-
els towards different fields. The first model, DS-CNN [58], is a
depthwise-separable CNN for keyword spotting. The second model,
MobileNet [18], is a lightweight CNN model for visual wake words.
The third model, ResNet [16], is a tiny residual CNN model which
takes the data format of CIFAR-10 dataset [26] as input for image
classification. The last model, DeepAuto [25], is a multi-layer fully-
connected network for anomaly detection. The accuracy of these
benchmarks is evaluated using an open-source unary computing
simulator, UnarySim [54].

0

20

40

60

32
-8

b

dscnn

0

5

10

mobilenet

0

20

40

resnet

0

20

40

60

deepauto

0

10

20

30

geomean

0

20

40

64
-8

b

0

3

6

0

10

20

0

20

40

60

0

10

20

0

10

20

30

12
8-

8b

0

2

4

0

5

10

0

20

40

60

0

5

10

0

5

10

25
6-

16
b

0.0

0.5

1.0

1.5

0

2

4

0

10

20

0

2

4

0

2

4

6

51
2-

16
b

0.0

0.3

0.6

0.9

0

1

2

0

10

20

0

1

2

0

1

2

3

10
24

-1
6b

0.0

0.2

0.4

0.0

0.5

1.0

0

5

10

0.0

0.5

1.0

WS-U
R

WS-U
T
IS-

UR
IS-

UT
OS-U

R
OS-U

T
0.0

0.5

1.0

1.5

20
48

-1
6b

WS-U
R

WS-U
T
IS-

UR
IS-

UT
OS-U

R
OS-U

T
0.0

0.1

0.2

WS-U
R

WS-U
T
IS-

UR
IS-

UT
OS-U

R
OS-U

T
0.0

0.2

0.4

0.6

WS-U
R

WS-U
T
IS-

UR
IS-

UT
OS-U

R
OS-U

T
0

5

10

WS-U
R

WS-U
T
IS-

UR
IS-

UT
OS-U

R
OS-U

T
0.0

0.2

0.4

0.6

En
er

gy
 E

ffi
cie

nc
y

(1
02 S

am
pl

es
/J)

uSystolic Cambricon-U

Figure 11: The energy efficiency (102 samples/J)

432

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Guo et al.

0

1

2

32
-8

b

dscnn

0

5

mobilenet

0.00

0.25

0.50

resnet

0.0

0.2

deepauto

0

2

4

64
-8

b

0

10

0.0

0.5

1.0

0.00

0.25

0.50

0

5

10

12
8-

8b

0

20

0

1

2

0.0

0.5

1.0

0

10

20

25
6-

16
b

0

50

0.0

2.5

5.0

0

2

0

20

40

51
2-

16
b

0

100

0

5

10

0.0

2.5

5.0

0

50

100

10
24

-1
6b

0

200

0

10

20

0

5

10

WS-U
R

WS-U
T

IS-
UR
IS-

UT
OS-U

R
OS-U

T
0

100

200

20
48

-1
6b

WS-U
R

WS-U
T

IS-
UR
IS-

UT
OS-U

R
OS-U

T
0

250

500

WS-U
R

WS-U
T

IS-
UR
IS-

UT
OS-U

R
OS-U

T
0

20

40

WS-U
R

WS-U
T

IS-
UR
IS-

UT
OS-U

R
OS-U

T
0

10

20

En
er

gy
 B

re
ak

do
wn

 (m
J)

ACC
WREG

IREG
MUL

PH
READ

CVT
SRAM

Figure 12: The energy breakdown (mJ). The left and right bar
of each pair of bars are uSystolic and Cambricon-U, respec-
tively.

7.2 Energy
Figure 11 shows the energy efficiency improvement of Cambricon-U
over uSystolic baselines under various configurations. The horizon-
tal axis is marked in the format Dataflow-Coding where WS-UR
means WS dataflow and Rate-coding as an example. The vertical
axis is marked in the format (MAC Cycles)-(bitwidth) where 32-8b
means 32 MAC cycles and 8-bit precision. Note that multiple MAC
cycles can be supported by a single precision because of early ter-
mination. Overall, the average energy efficiency of Cambricon-U
is 1.18-1.45× over uSystolic. The average improvement of energy
efficiency in WS, IS and OS is 18%-28%, 20%-33% and 38%-45%, re-
spectively. The improvement of OS is the highest because in OS
dataflow, the accumulation occupies higher ratio of total energy.
The results also demonstrate that RIM is applicable to versatile
unary systolic array architectures with various coding-schemes
and dataflows. Moreover, Cambricon-U outperforms the original
uSystolic with WS dataflow 1.18-1.28×, 2.86-4.06× and 2.96-4.79×
on average in WS, IS and OS, respectively. Although WS dataflow
is more suitable for fully-connected layers, as the deepauto model
exhibits the highest energy efficiency on WS dataflows, it has the
lowest energy efficiency for the other three CNN models. The en-
ergy efficiency ofWS dataflow for dscnn and mobilenet is extremely
low because of the severe under-utilization of PEs when execut-
ing depthwise-separable convolution layers. As a result, the WS
dataflow has the lowest energy efficiency on average.

0

1

2

32
-8

b

dscnn

0

5

mobilenet

0.00

0.25

0.50

resnet

0.0

0.2

deepauto

0

2

4

64
-8

b

0

10

0.0

0.5

1.0

0.00

0.25

0.50

0

5

10

12
8-

8b

0

20

0

1

2

0.0

0.5

1.0

0

10

20

25
6-

16
b

0

50

0.0

2.5

5.0

0

2

0

20

40

51
2-

16
b

0

100

0

5

10

0.0

2.5

5.0

0

50

100

10
24

-1
6b

0

200

0

10

20

0

5

10

WS-U
R

WS-U
T

IS-
UR
IS-

UT
OS-U

R
OS-U

T
0

100

200

20
48

-1
6b

WS-U
R

WS-U
T

IS-
UR
IS-

UT
OS-U

R
OS-U

T
0

250

500

WS-U
R

WS-U
T

IS-
UR
IS-

UT
OS-U

R
OS-U

T
0

20

40

WS-U
R

WS-U
T

IS-
UR
IS-

UT
OS-U

R
OS-U

T
0

10

20

En
er

gy
 B

re
ak

do
wn

 (m
J)

Static Dynamic

Figure 13: The energy breakdown of static and dynamic en-
ergy (mJ). The left and right bar of each pair of bars are
uSystolic and Cambricon-U, respectively.

To further study the influence of RIM, we breakdown the energy
cost in Figure 12 and 13. The ratio of accumulation energy is reduced
from 32%-70% to 16%-50%. The OS dataflow baselines experience
higher energy efficiency improvement than other dataflows because
of the higher ratio of accumulation energy, which is 64%-70% com-
pared to 32%-47% and 36%-53% inWS and IS, respectively. The ratios
of accumulation energy in Cambricon-U are reduced to 16%-26%,
18%-30% and 44%-50% in WS, IS and OS, respectively. Moreover,
we find that the energy consumed by accumulation is reduced (-
18%∼-36%) more than the additional energy cost (+2.3%∼+3.8%)
of the converters. The converters in Cambricon-U only occupies
2.7%-5.1% of total energy in all the evaluated architectures and
benchmarks. The low energy overhead of converters demonstrates
that the converters have been efficiently shared by multiple PEs.
The ratios of read-out energy of RIM in WS, IS and OS architectures
are mostly 7.2%, 10.1% and 0.1%, respectively. The results show that
the read-out energy of RIM is also much lower than the RIM incre-
ment energy. In addition, the reason of the low fraction of SRAM
energy consumption is that the long MAC cycles reduce the num-
ber of SRAM banks. For instance, in OS dataflow, a 64×64 PE array
only needs two banks for input and weight buffers, thus reducing
the energy cost of the crossbars in SRAM buffers. Moreover, as
Figure 13 shows, Cambricon-U mainly reduces the dynamic energy
of uSystolic. Overall, RIM can reduce the accumulation energy cost
with minimal additional energy overhead.

433

Cambricon-U: A Systolic Random Increment Memory Architecture for Unary Computing MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

WS-U
R

WS-U
T

IS-
UR

IS-
UT

OS-U
R

OS-U
T

0

1

2

3

4

5

8b

WS-U
R

WS-U
T

IS-
UR

IS-
UT

OS-U
R

OS-U
T

0

2

4

6

8

16b

Ar
ea

 B
re

ak
do

wn
 (m

m
2)

ACC WREG IREG MUL PH CVT SRAM

Figure 14: The area breakdown. The left and right bar of each
pair of bars are uSystolic and Cambricon-U, respectively.

7.3 Area
Figure 14 shows the area breakdown of the evaluated architec-
tures. The area overhead is only -1.9%∼+0.48% for 8-bit architec-
tures (the two multiplication inputs are 8-bit signed numbers) and
-1.2%∼+0.77% for 16-bit architectures. For 8-bit architectures, the
RIMs and PEs reduce 3.5%-5.2% of the total area, and converters and
PH introduce 2.7%-3.9% and 0.1%-0.8% of the total area, respectively.
For 16-bit architectures, the RIMs and PEs reduce 2.0%-3.4%, and the
converters and PH introduce 1.7%-2.5% and 0.1%-1.0% of the total
area, respectively. RIM incurs roughly lower relative area change
to the 16-bit architectures in that the 16-bit architectures require
as twice bitwidth as the 8-bit architectures in both the accelera-
tion core and external memory, thus the area is larger than that
of 8-bit architectures. The results demonstrate the effectiveness
of the converter to avoid doubling external memory capacity by
transforming skew numbers to binary numbers before writing the
output feature maps to external memory. Additionally, the low area
cost is partly due to the large area of the SRAM, which occupies
54%-71% of the uSystolic baselines. The high fraction of SRAM area
is due to the simplified unary PE, which has only 30%-56% of the
area of a binary PE. However, even for the acceleration core only,
the area overhead is only -4.2%∼+1.0% for 8-bit architectures and
-4.1%∼+1.9% for 16-bit architectures. The results show that even for
the acceleration core, the area overhead is still acceptable.

7.4 Accuracy
Figure 15 shows the top-1 inference accuracy of Cambricon-U, FP32
and INT-n (n-bit quantized binary model). Please note that the bits
of INT-n is the 2-based logarithm of unary cycles (shown in the
x-axis) plus a sign bit. For example, INT-8 is aligned with 128 unary
cycles. As Cambricon-U is based on uSystolic, they are identical
regarding the accuracy.

8 DISCUSSION
Real-world Evaluation. We evaluate Cambricon-U on four

larger ImageNet [10] models, namely MobileNetV1 [18],
SqueezeNetV1 [21], DenseNet [19, 20], and EfficientNetB0 [51].
These NN models are widely used in real-world scenarios. To
fit the models, SRAM buffers are extended to 12MB, and the PE
array is scaled to 256×256. The results show that Cambricon-U
has 1.22×-1.47× energy efficiency, -3.2%∼+0.5% total chip area,
and -7.6%∼+1.2% acceleration core area over uSystolic. Overall, the
improvements are in line with MLPerf-Tiny models.

0.0

50.0

100.

ds
cn

n

Proposed
INT-n

FP32

45.0

65.0

85.0

m
ob

ile
ne

t

0.0

45.0

90.0

re
sn

et

32 64 128 256 512 1024 2048 FP32
40.0

65.0

90.0

de
ep

au
to

Figure 15: The Top-1 accuracy of the four DNN models.

RIM in Other Unary Architectures. We apply RIM to BISC-
MVM [49] and DPS [48] architectures. Both are HUB architectures
with binary accumulators. With RIM, the energy efficiency is im-
proved by 34%-41% and 28%-37%, respectively.

Comparison with Other Potential Solutions. A trivial potential
solution is buffering a short window (4-bit) of a unary bitstream and
using bit-counting logic to reduce the frequency of accumulation.
As shown in Table 2, the bit-counting solution is still worse than
RIM for two reasons. First, the buffering and counting introduce
overheads. Second, the accumulator is required to accumulate 3-bit
increments instead of one bit. The results show the supremacy of
the proposed RIM accumulator.

Comparison with Binary Design. We compare Cambricon-U with
an INT-8 binary accelerator. The binary design consumes 2.1×
energy and 2.2× area over Cambricon-U, as the binary PE has a
large binary multiplier.

Comparison of Performance. Cambricon-U incurs negligible over-
head on performance, as conversion is pipelined with buffering and
computing. The latency of the Converter is fixed (1.93ns) regardless
of bit length, thus only accounting for ∼1% of the pipeline latency.

ISA Support. Since Cambricon-U is based on uSystolic, they share
a similar ISA. Specifically, each binary instruction is augmented

Table 2: Comparison of accumulators in uSystolic, bit-
counting, and RIM-based.

Static
Power
(uW)

Dynamic
Power
(uW)

Total
Power
(uW)

Area
(um2)

uSys. 3.21 91.10 94.31 349.26
Bitc. 4.23 70.83 75.06 499.03
RIM. 0.42 45.75 46.17 340.50

434

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Guo et al.

with a new field indicating the MAC cycles. In addition, a config-
uration instruction is utilized to set the LREG in Converters just
before executing each layer.

Limitations. Limitations mainly exist on excessively shrinking
the size of the systolic array in Cambricon-U. A too small systolic
array (e.g., 2×2 PEs) would undermine the reuse of converters, thus
suffering from their extra overhead. However, typically, the size
of the PE array exceeds 16×16 (e.g., 128×128 in TPU [23], 32×32
in Cambricon-Q [59], and 96×96 in FSD [5]) to ensure computa-
tional parallelism, thereby prominently diluting the overhead of
converters.

9 RELATEDWORK
In general, dedicated unary computing hardware can be categorized
into Fully Streaming Unary (FSU) or Hybrid Unary-Binary (HUB)
architectures [55].

9.1 FSU Architecture
The FSU architecture fixes the entire model structure of a specific
DNN in the circuit, fully utilizing the parallelism of the target
DNN model [24, 32, 43, 54, 56]. Kim 𝑒𝑡 𝑎𝑙 . presented error mitiga-
tion techniques to reduce MAC cycles for higher performance [24].
SC-DCNN [43] proposed various stochastic computing function
extraction blocks such as inner-product and pooling, which can be
carefully selected to minimize energy and area. Yu 𝑒𝑡 𝑎𝑙 . proposed
stochastic ReLu and Max functions for high accuracy and energy
efficiency [56]. HEIF [32] proposed optimizations of function blocks
and weight storage for high energy efficiency. uGEMM [54] pro-
posed novel multipliers that support both rate-coding and temporal
coding schemes. SASCHA [45] proposed a sparse SC PE to exploit
the sparsity of DNNs. A new encoding method called Extended
Stochastic Logic (ESL) [7] has been proposed to address the range
limitation of unary bitstreams, and was adopted by Chen 𝑒𝑡 𝑎𝑙 . and
Liu 𝑒𝑡 𝑎𝑙 . to improve the accuracy of the targeted DNNs [8, 34].
Although FSU architectures avoid buffering unary bitstreams by
accumulating, thus achieving high performance [43, 54], it can nei-
ther be versatile for different DNN configurations nor scalable for
large-scale DNNs like AlexNet [27]. As a result, FSU architectures
are often evaluated on LeNet-5 [28] or small hand-written neural
networks with MNIST [11] or CIFAR-10 [26] dataset. Compared
to FSU architectures, Cambricon-U is more general and scalable to
support versatile real-life DNNs with high energy efficiency.

9.2 HUB Architecture
Unlike FSU, the HUB architecture is designed to support general
DNN structures or configurations through tiling [31, 50, 55]. Sim
𝑒𝑡 𝑎𝑡 . proposed a tile-parallel binary-interlaced architecture for
scalable stochastic CNNs [50]. HBUBB [14] leveraged the HUB
architecture to realize a complete ResNet-18 on FPGA. Lee 𝑒𝑡 𝑎𝑙 .
proposed a stochastic-binary hybrid design for efficient near sensor
computing. Also, several works exploit the data reuse and accuracy
of HUB architectures [9, 31, 44]. Moreover, temporal-coding scheme
has also been adopted to reduce RNG overhead and improve accu-
racy and performance [17, 48, 49, 55]. These works are orthogonal
to our research. However, the generality and scalability come at
the cost of lower power efficiency. During the calculation process,

the unary bitstream (including hundreds even thousands of bits)
transferred back and forth between tiles needs to be repeatedly
accumulated into a large bitwidth binary number for buffering,
thus undermining the power efficiency. Cambricon-U innovatively
integrates a novel Random Increment Memory (RIM) which accu-
mulates unary bitstreams to skew numbers, which can accumulate
one bit by activating at most three bits, thus addressing the power
bottleneck of the HUB architectures.

10 CONCLUSION
We propose a systolic random increment memory architecture,
namely Cambricon-U, which features efficient accumulation to
buffer unary bitstreams. Cambricon-U integrates a unary systolic
array with RIMs, which accumulates unary bitstreams from PEs to
skew numbers, whose increment only activates at most three bits
(instead of all bits), thus enabling power-efficient accumulation.
Experiments demonstrate the ability of Cambricon-U to improve
energy efficiency 1.18-1.45× over versatile unary systolic array
baselines, with the accumulation power reduced by 51%, breaking
through the power bottleneck of unary computing.

ACKNOWLEDGMENTS
This work is partially supported by the National Key R&D Program
of China (under Grant 2022YFB4501601), the NSF of China (under
Grants 62102398, 62222214, 62102399, U22A2028, U19B2019), CAS
Project for Young Scientists in Basic Research (YSBR-029) and Youth
Innovation Promotion Association CAS.

REFERENCES
[1] Armin Alaghi and John P. Hayes. 2013. Exploiting correlation in stochastic circuit

design. In 2013 IEEE 31st International Conference on Computer Design (ICCD).
39–46. https://doi.org/10.1109/ICCD.2013.6657023

[2] Armin Alaghi and John P. Hayes. 2013. Survey of Stochastic Computing. ACM
Trans. Embed. Comput. Syst. 12, 2s, Article 92 (may 2013), 19 pages. https:
//doi.org/10.1145/2465787.2465794

[3] Rajeev Balasubramonian, Andrew B. Kahng, Naveen Muralimanohar, Ali Shafiee,
and Vaishnav Srinivas. 2017. CACTI 7: New Tools for Interconnect Exploration
in Innovative Off-Chip Memories. ACM Trans. Archit. Code Optim. 14, 2, Article
14 (jun 2017), 25 pages. https://doi.org/10.1145/3085572

[4] Colby Banbury, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman, Nat Jeffries,
Csaba Kiraly, Pietro Montino, David Kanter, Sebastian Ahmed, Danilo Pau, et al.
2021. MLPerf Tiny Benchmark. Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks (2021).

[5] Pete Bannon, Ganesh Venkataramanan, Debjit Das Sarma, and Emil Talpes. 2019.
Computer and Redundancy Solution for the Full Self-Driving Computer. In 2019
IEEE Hot Chips 31 Symposium (HCS). 1–22. https://doi.org/10.1109/HOTCHIPS.
2019.8875645

[6] B.D. Brown and H.C. Card. 2001. Stochastic neural computation. I. Computational
elements. IEEE Trans. Comput. 50, 9 (2001), 891–905. https://doi.org/10.1109/12.
954505

[7] Vincent Canals, Antoni Morro, Antoni Oliver, Miquel L. Alomar, and Josep L.
Rosselló. 2016. A New Stochastic Computing Methodology for Efficient Neural
Network Implementation. IEEE Transactions on Neural Networks and Learning
Systems 27, 3 (2016), 551–564. https://doi.org/10.1109/TNNLS.2015.2413754

[8] Kun-Chih Chen and Chi-Hsun Wu. 2021. High-Accurate Stochastic Computing
for Artificial Neural Network by Using Extended Stochastic Logic. In 2021 IEEE
International Symposium on Circuits and Systems (ISCAS). 1–4. https://doi.org/
10.1109/ISCAS51556.2021.9401418

[9] Zhiyuan Chen, Yufei Ma, and Zhongfeng Wang. 2022. Hybrid Stochastic-Binary
Computing for Low-Latency and High-Precision Inference of CNNs. IEEE
Transactions on Circuits and Systems I: Regular Papers 69, 7 (2022), 2707–2720.
https://doi.org/10.1109/TCSI.2022.3166524

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
ageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition. 248–255. https://doi.org/10.1109/CVPR.
2009.5206848

435

https://doi.org/10.1109/ICCD.2013.6657023
https://doi.org/10.1145/2465787.2465794
https://doi.org/10.1145/2465787.2465794
https://doi.org/10.1145/3085572
https://doi.org/10.1109/HOTCHIPS.2019.8875645
https://doi.org/10.1109/HOTCHIPS.2019.8875645
https://doi.org/10.1109/12.954505
https://doi.org/10.1109/12.954505
https://doi.org/10.1109/TNNLS.2015.2413754
https://doi.org/10.1109/ISCAS51556.2021.9401418
https://doi.org/10.1109/ISCAS51556.2021.9401418
https://doi.org/10.1109/TCSI.2022.3166524
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848

Cambricon-U: A Systolic Random Increment Memory Architecture for Unary Computing MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

[11] Li Deng. 2012. The MNIST Database of Handwritten Digit Images for Machine
Learning Research [Best of the Web]. IEEE Signal Processing Magazine 29, 6
(2012), 141–142. https://doi.org/10.1109/MSP.2012.2211477

[12] J.A. Dickson, R.D. McLeod, and H.C. Card. 1993. Stochastic arithmetic implemen-
tations of neural networks with in situ learning. In IEEE International Conference
on Neural Networks. 711–716 vol.2. https://doi.org/10.1109/ICNN.1993.298642

[13] Amr Elmasry, Claus Jensen, and Jyrki Katajainen. 2011. Two Skew-Binary Nu-
meral Systems and One Application. Theory of Computing Systems 50 (2011),
185–211.

[14] Sayed Abdolrasouol Faraji, Gaurav Singh, and Kia Bazargan. 2019. HBUNN -
Hybrid Binary-Unary Neural Network: Realizing a Complete CNN on an FPGA.
In 2019 IEEE 37th International Conference on Computer Design (ICCD). 156–163.
https://doi.org/10.1109/ICCD46524.2019.00027

[15] B. R. Gaines. 1967. Stochastic Computing. In Proceedings of the April 18-20,
1967, Spring Joint Computer Conference (Atlantic City, New Jersey) (AFIPS ’67
(Spring)). Association for Computing Machinery, New York, NY, USA, 149–156.
https://doi.org/10.1145/1465482.1465505

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.90

[17] Reza Hojabr, Kamyar Givaki, SM. Reza Tayaranian, Parsa Esfahanian, Ahmad
Khonsari, Dara Rahmati, and M. Hassan Najafi. 2019. SkippyNN: An Embedded
Stochastic-Computing Accelerator for Convolutional Neural Networks. In 2019
56th ACM/IEEE Design Automation Conference (DAC). 1–6.

[18] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Wei-
jun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mo-
bileNets: Efficient Convolutional Neural Networks forMobile Vision Applications.
arXiv:1704.04861 [cs.CV]

[19] Gao Huang, Zhuang Liu, Geoff Pleiss, Laurens Van Der Maaten, and Kilian
Weinberger. 2019. Convolutional Networks with Dense Connectivity. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2019).

[20] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q Weinberger.
2017. Densely Connected Convolutional Networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.

[21] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J.
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and <0.5MB model size. arXiv:1602.07360 (2016).

[22] Hongwu Jiang, Xiaochen Peng, Shanshi Huang, and Shimeng Yu. 2019. CIMAT:
A Transpose SRAM-Based Compute-in-Memory Architecture for Deep Neu-
ral Network on-Chip Training. In Proceedings of the International Symposium
on Memory Systems (Washington, District of Columbia, USA) (MEMSYS ’19).
Association for Computing Machinery, New York, NY, USA, 490–496. https:
//doi.org/10.1145/3357526.3357552

[23] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis of a
Tensor Processing Unit. In Proceedings of the 44th Annual International Symposium
on Computer Architecture (Toronto, ON, Canada) (ISCA ’17). Association for
Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/
3079856.3080246

[24] Kyounghoon Kim, Jungki Kim, Joonsang Yu, Jungwoo Seo, Jongeun Lee, and
Kiyoung Choi. 2016. Dynamic energy-accuracy trade-off using stochastic com-
puting in deep neural networks. In 2016 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC). 1–6. https://doi.org/10.1145/2897937.2898011

[25] Yuma Koizumi, Yohei Kawaguchi, Keisuke Imoto, Toshiki Nakamura, Yuki
Nikaido, Ryo Tanabe, Harsh Purohit, Kaori Suefusa, Takashi Endo, Masahiro
Yasuda, and Noboru Harada. 2020. Description and Discussion on DCASE2020
Challenge Task2: Unsupervised Anomalous Sound Detection for Machine Condi-
tion Monitoring. arXiv:2006.05822 [eess.AS]

[26] A. Krizhevsky and G. Hinton. 2009. Learning multiple layers of features from tiny
images. Master’s thesis, Department of Computer Science, University of Toronto
(2009).

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2017. ImageNet Classi-
fication with Deep Convolutional Neural Networks. Commun. ACM 60, 6 (may
2017), 84–90. https://doi.org/10.1145/3065386

[28] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,W. Hubbard, and L. D.
Jackel. 1989. Backpropagation Applied to Handwritten Zip Code Recognition.
Neural Computation 1, 4 (1989), 541–551. https://doi.org/10.1162/neco.1989.1.4.
541

[29] Peng Li, David J. Lilja, Weikang Qian, Kia Bazargan, and Marc D. Riedel. 2014.
Computation on Stochastic Bit Streams Digital Image Processing Case Studies.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 22, 3 (2014),
449–462. https://doi.org/10.1109/TVLSI.2013.2247429

[30] Shuangchen Li, Alvin Oliver Glova, Xing Hu, Peng Gu, Dimin Niu, Krishna T. Mal-
ladi, Hongzhong Zheng, Bob Brennan, and Yuan Xie. 2018. SCOPE: A Stochastic
Computing Engine for DRAM-Based in-Situ Accelerator. In Proceedings of the 51st
Annual IEEE/ACM International Symposium on Microarchitecture (Fukuoka, Japan)
(MICRO-51). IEEE Press, 696–709. https://doi.org/10.1109/MICRO.2018.00062

[31] Tianmu Li, Wojciech Romaszkan, Sudhakar Pamarti, and Puneet Gupta. 2021.
GEO: Generation and Execution Optimized Stochastic Computing Accelerator
for Neural Networks. In 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE). 689–694. https://doi.org/10.23919/DATE51398.2021.9473911

[32] Zhe Li, Ji Li, Ao Ren, Ruizhe Cai, Caiwen Ding, Xuehai Qian, Jeffrey Draper,
Bo Yuan, Jian Tang, Qinru Qiu, and Yanzhi Wang. 2019. HEIF: Highly Efficient
Stochastic Computing-Based Inference Framework for Deep Neural Networks.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
38, 8 (2019), 1543–1556. https://doi.org/10.1109/TCAD.2018.2852752

[33] Siting Liu and Jie Han. 2017. Energy efficient stochastic computing with Sobol
sequences. InDesign, Automation& Test in Europe Conference& Exhibition (DATE),
2017. 650–653. https://doi.org/10.23919/DATE.2017.7927069

[34] Yidong Liu, Siting Liu, Yanzhi Wang, Fabrizio Lombardi, and Jie Han. 2018. A
Stochastic Computational Multi-Layer Perceptron with Backward Propagation.
IEEE Trans. Comput. 67, 9 (2018), 1273–1286. https://doi.org/10.1109/TC.2018.
2817237

[35] Yidong Liu, Siting Liu, Yanzhi Wang, Fabrizio Lombardi, and Jie Han. 2021. A
Survey of Stochastic Computing Neural Networks for Machine Learning Appli-
cations. IEEE Transactions on Neural Networks and Learning Systems 32, 7 (2021),
2809–2824. https://doi.org/10.1109/TNNLS.2020.3009047

[36] Advait Madhavan, Timothy Sherwood, and Dmitri Strukov. 2014. Race Logic: A
hardware acceleration for dynamic programming algorithms. In 2014 ACM/IEEE
41st International Symposium on Computer Architecture (ISCA). 517–528. https:
//doi.org/10.1109/ISCA.2014.6853226

[37] Massimo Merenda, Carlo Porcaro, and Demetrio Iero. 2020. Edge Machine
Learning for AI-Enabled IoT Devices: A Review. Sensors 20 (2020), 2533.

[38] EugeneWimberly Myers. 1983. An Applicative Random-Access Stack. Inf. Process.
Lett. 17 (1983), 241–248.

[39] M. Hassan Najafi, David J. Lilja, Marc Riedel, and Kia Bazargan. 2017. Power and
Area Efficient Sorting Networks Using Unary Processing. In 2017 IEEE Interna-
tional Conference on Computer Design (ICCD). 125–128. https://doi.org/10.1109/
ICCD.2017.27

[40] M. Hassan Najafi, David. J. Lilja, Marc D. Riedel, and Kia Bazargan. 2018. Low-
Cost Sorting Network Circuits Using Unary Processing. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 26, 8 (2018), 1471–1480. https://doi.
org/10.1109/TVLSI.2018.2822300

[41] NCSU. [n. d.]. FreePDK45. [EB/OL]. https://eda.ncsu.edu/freepdk/freepdk45/
Accessed April 20, 2023.

[42] Weikang Qian and Marc D Riedel. 2010. Synthesizing logical computation on
stochastic bit streams. submitted to Communications of the ACM (2010).

[43] Ao Ren, Zhe Li, Caiwen Ding, Qinru Qiu, Yanzhi Wang, Ji Li, Xuehai Qian, and
Bo Yuan. 2017. SC-DCNN: Highly-Scalable Deep Convolutional Neural Network
Using Stochastic Computing. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating
Systems (Xi’an, China) (ASPLOS ’17). Association for Computing Machinery, New
York, NY, USA, 405–418. https://doi.org/10.1145/3037697.3037746

[44] Wojciech Romaszkan, Tianmu Li, Rahul Garg, Jiyue Yang, Sudhakar Pamarti, and
Puneet Gupta. 2022. A 4.4–75-TOPS/W 14-nm Programmable, Performance- and
Precision-Tunable All-Digital Stochastic Computing Neural Network Inference
Accelerator. IEEE Solid-State Circuits Letters 5 (2022), 206–209. https://doi.org/
10.1109/LSSC.2022.3200064

[45] Wojciech Romaszkan, Tianmu Li, and Puneet Gupta. 2022. SASCHA—Sparsity-
Aware Stochastic Computing Hardware Architecture for Neural Network Accel-
eration. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 41, 11 (2022), 4169–4180. https://doi.org/10.1109/TCAD.2022.3197503

[46] Wojciech Romaszkan, Tianmu Li, Tristan Melton, Sudhakar Pamarti, and Puneet
Gupta. 2020. ACOUSTIC: Accelerating Convolutional Neural Networks through
Or-Unipolar Skipped Stochastic Computing. In 2020 Design, Automation & Test
in Europe Conference & Exhibition (DATE). 768–773. https://doi.org/10.23919/
DATE48585.2020.9116289

[47] A. Samajdar, Yuhao Zhu, Paul N. Whatmough, Matthew Mattina, and Tushar Kr-
ishna. 2018. SCALE-Sim: Systolic CNN Accelerator Simulator. arXiv: Distributed,
Parallel, and Cluster Computing (2018).

[48] Hyeonuk Sim, Saken Kenzhegulov, and Jongeun Lee. 2018. DPS: Dynamic
Precision Scaling for Stochastic Computing-based Deep Neural Networks. In

436

https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/ICNN.1993.298642
https://doi.org/10.1109/ICCD46524.2019.00027
https://doi.org/10.1145/1465482.1465505
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1704.04861
https://doi.org/10.1145/3357526.3357552
https://doi.org/10.1145/3357526.3357552
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/2897937.2898011
https://arxiv.org/abs/2006.05822
https://doi.org/10.1145/3065386
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/TVLSI.2013.2247429
https://doi.org/10.1109/MICRO.2018.00062
https://doi.org/10.23919/DATE51398.2021.9473911
https://doi.org/10.1109/TCAD.2018.2852752
https://doi.org/10.23919/DATE.2017.7927069
https://doi.org/10.1109/TC.2018.2817237
https://doi.org/10.1109/TC.2018.2817237
https://doi.org/10.1109/TNNLS.2020.3009047
https://doi.org/10.1109/ISCA.2014.6853226
https://doi.org/10.1109/ISCA.2014.6853226
https://doi.org/10.1109/ICCD.2017.27
https://doi.org/10.1109/ICCD.2017.27
https://doi.org/10.1109/TVLSI.2018.2822300
https://doi.org/10.1109/TVLSI.2018.2822300
https://eda.ncsu.edu/freepdk/freepdk45/
https://doi.org/10.1145/3037697.3037746
https://doi.org/10.1109/LSSC.2022.3200064
https://doi.org/10.1109/LSSC.2022.3200064
https://doi.org/10.1109/TCAD.2022.3197503
https://doi.org/10.23919/DATE48585.2020.9116289
https://doi.org/10.23919/DATE48585.2020.9116289

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Guo et al.

2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). 1–6. https:
//doi.org/10.1109/DAC.2018.8465700

[49] Hyeonuk Sim and Jongeun Lee. 2017. A new stochastic computing multiplier with
application to deep convolutional neural networks. In 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC). 1–6. https://doi.org/10.1145/3061639.
3062290

[50] Hyeonuk Sim, Dong Nguyen, Jongeun Lee, and Kiyoung Choi. 2017. Scalable
stochastic-computing accelerator for convolutional neural networks. In 2017
22nd Asia and South Pacific Design Automation Conference (ASP-DAC). 696–701.
https://doi.org/10.1109/ASPDAC.2017.7858405

[51] Mingxing Tan and Quoc V. Le. 2020. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. arXiv:1905.11946 [cs.LG]

[52] Georgios Tzimpragos, Advait Madhavan, Dilip Vasudevan, Dmitri Strukov, and
Timothy Sherwood. 2019. Boosted Race Trees for Low Energy Classification. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (Providence, RI, USA) (ASPLOS
’19). Association for Computing Machinery, New York, NY, USA, 215–228. https:
//doi.org/10.1145/3297858.3304036

[53] Di Wu, Jingjie Li, Zhewen Pan, Younghyun Kim, and Joshua San Miguel. 2022.
UBrain: A Unary Brain Computer Interface. In Proceedings of the 49th Annual
International Symposium on Computer Architecture (New York, New York) (ISCA
’22). Association for Computing Machinery, New York, NY, USA, 468–481. https:
//doi.org/10.1145/3470496.3527401

[54] Di Wu, Jingjie Li, Ruokai Yin, Hsuan Hsiao, Younghyun Kim, and Joshua San
Miguel. 2020. UGEMM: Unary Computing Architecture for GEMM Applications.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). 377–390. https://doi.org/10.1109/ISCA45697.2020.00040

[55] Di Wu and Joshua San Miguel. 2022. uSystolic: Byte-Crawling Unary Systolic
Array. In 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). 12–24. https://doi.org/10.1109/HPCA53966.2022.00010

[56] Joonsang Yu, Kyounghoon Kim, Jongeun Lee, and Kiyoung Choi. 2017. Accurate
and Efficient Stochastic Computing Hardware for Convolutional Neural Net-
works. In 2017 IEEE International Conference on Computer Design (ICCD). 105–112.
https://doi.org/10.1109/ICCD.2017.24

[57] Aidyn Zhakatayev, Sugil Lee, Hyeonuk Sim, and Jongeun Lee. 2018. Sign-
Magnitude SC: Getting 10X Accuracy for Free in Stochastic Computing for Deep
Neural Networks. In 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC). 1–6. https://doi.org/10.1109/DAC.2018.8465807

[58] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra. 2018. Hello
Edge: Keyword Spotting on Microcontrollers. arXiv:1711.07128 [cs.SD]

[59] Yongwei Zhao, Chang Liu, Zidong Du, Qi Guo, Xing Hu, Yimin Zhuang, Zhenxing
Zhang, Xinkai Song, Wei Li, Xishan Zhang, Ling Li, Zhiwei Xu, and Tianshi
Chen. 2021. Cambricon-Q: A Hybrid Architecture for Efficient Training. In 2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA).
706–719. https://doi.org/10.1109/ISCA52012.2021.00061

437

https://doi.org/10.1109/DAC.2018.8465700
https://doi.org/10.1109/DAC.2018.8465700
https://doi.org/10.1145/3061639.3062290
https://doi.org/10.1145/3061639.3062290
https://doi.org/10.1109/ASPDAC.2017.7858405
https://arxiv.org/abs/1905.11946
https://doi.org/10.1145/3297858.3304036
https://doi.org/10.1145/3297858.3304036
https://doi.org/10.1145/3470496.3527401
https://doi.org/10.1145/3470496.3527401
https://doi.org/10.1109/ISCA45697.2020.00040
https://doi.org/10.1109/HPCA53966.2022.00010
https://doi.org/10.1109/ICCD.2017.24
https://doi.org/10.1109/DAC.2018.8465807
https://arxiv.org/abs/1711.07128
https://doi.org/10.1109/ISCA52012.2021.00061

	Abstract
	1 Introduction
	2 Background
	2.1 Unary Computing
	2.2 uSystolic

	3 Motivation
	4 Random Increment Memory
	4.1 Structure
	4.2 Functions

	5 Cambricon-U Architecture
	5.1 Overview
	5.2 PE
	5.3 Converter
	5.4 Scalability

	6 Circuit-level Design of RIM
	6.1 Implementation
	6.2 Operation Steps

	7 Evaluation
	7.1 Experimental Setup
	7.2 Energy
	7.3 Area
	7.4 Accuracy

	8 Discussion
	9 Related Work
	9.1 FSU Architecture
	9.2 HUB Architecture

	10 Conclusion
	Acknowledgments
	References

