
SCIENCE CHINA
Information Sciences

. RESEARCH PAPER .

Rescue to the Curse of universality

Yongwei Zhao1, Zidong Du1,3, Qi Guo1, Zhiwei Xu1,2 & Yunji Chen1,2*

1State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;
2University of Chinese Academy of Sciences, Beijing 100049, China;
3Beijing Academy of Artificial Intelligence, Beijing 100084, China

Abstract From the very beginning of computers, universality has been the core focus in the building of

computing machines, such as the Universal Turing Machine, von Neumann Architecture, Random-access

Machines, and Universal Circuits. Academia has taken universality as the primary principle ever since.

However, the Curse of universality, implied from L. G. Valiant’s Universal Circuit, states that computers

based on logic circuits cannot be both universal and efficient, as the cost of universality is Ω(n log2 n).

Though the Curse has been hidden by the rapid advancement of semiconductor technologies, it has been

wielding its effects noticeably in recent years. Due to the ending of Dennard scaling and Moore’s law, general-

purpose processors leave less room for improvement. Therefore, domain-specific architectures (DSAs), such

as deep learning processors, have been exploding, leading to the new golden age of computer architectures.

For DSAs, universality is traded off for optimal efficiency. However, we predict that universality will once

again be a major concern for post-golden-age computers.

In this paper, we discuss how much universality could an efficient computer keep. As a rescue to the Curse,
we define and discuss quasi-universal architectures. Quasi-universal architectures can solve any computable

problem and are efficient for a wide range of problems. The proposed recursive-encapsulated (REnc) archi-

tecture achieves maximal universality while keeping optimal efficiency as found in specialized architectures.

The discovery of REnc suggests that current golden-age architectures are not Pareto optimal.

Keywords universality, general-purpose architecture, specialized architecture, deep learning processor,

universal circuit

Citation Yongwei Zhao, Zidong Du, Qi Guo, Zhiwei Xu, Yunji Chen. Rescue to the curse of universality. Sci

China Inf Sci, for review

High-level, domain-specific languages and architectures, freeing architects from the chains of proprietary
instruction sets...will usher in a new golden age for computer architects.

——John L. Hennessy and David A. Patterson, Turing lecture [1]

1 Introduction

From the very beginning of computer science, universality has been the primary principle for building
computing machines. In 1937, Alan M. Turing constructed the Universal Turing Machine to show that
there are undecidable problems [2]. In 1945, John von Neumann summarized the stored-program prin-
ciple for designing variable (universal) computers [3]. In 1976, Leslie G. Valiant proposed the Universal
Circuits, whose cost is optimal to the informational lower bound [4]. The philosophy behind, i.e., one
machine for all tasks, is driving computer scientists to pursue universality.

Universality is a Curse, nevertheless, since it contradicts efficiency. The contradiction is well-defined
under the circuit model by L.G. Valiant’s aforementioned work: due to the informational bound, there
is an inevitable efficiency gap between the specialized circuits and the universal circuit, namely the Curse
of universality that is discussed in this paper. However, the Curse had been hidden for several decades.
As predicted under the Dennard scaling and Moore’s law, the performance of computers were increasing
rapidly even without much architectural optimization thanks to the advances in semiconductor technology.
Therefore, computer scientists reached a universality-first consensus, where universality comes first, and
then efficiency is discussed and improved.

*Corresponding author (email: cyj@ict.ac.cn)

Yongwei Zhao, et al. Sci China Inf Sci 2

Eventually, most of the low-hanging fruits implied from Dennard’s scaling and Moore’s law has been
picked. In this century, computer scientists have proposed several techniques to maintain the rate of
improvement in efficiency. In 2003, the frequency of processors stopped growing and parallel computing
became popular. In 2010, the multicore scaling also flattened due to the Dark Silicon [5] and heterogeneous
computing (e.g., GPGPU) was favored. However, the GPU also hit walls: the CUDA cores increased
∼ 70%/year in the five years before 2014, but the ratio flattened to ∼ 9%/year in the five years after
2014.

The Curse prominently wields its effects nowadays, at which time computer scientists are forced to
trade universality for efficiency. Domain-specific architectures (DSAs), rather than general-purpose ones,
have been extensively studied in recent works. In 2014, researchers proposed DianNao [6] to accelerate
deep neural networks, providing ∼ 100× speedup and ∼ 20× energy savings over CPUs. In 2017, NVIDIA
released the Volta architecture with TensorCores, substantially increasing the GPU peak performance
from 18.7TFlops to 125TFlops under deep learning scenarios. Due to the great explosion of deep learning
applications, a variety of Deep Learning Processors (DLPs) are proposed, racing towards the extreme
of efficiency. After discarding the yoke from universality requirements, the computer scientists opened a
new golden age, according to David A. Patterson and John L. Hennessy’s Turing lecture [1] in 2017.

It is not a secret that universality contradicts efficiency. Trade-offs were extensively studied in the old
age, when computer scientists asked how efficient could a universal computer be. Then the new golden
age researchers need to understand how efficient could a computer be, even if not necessarily universal.
There are hardly any works discussing how much universality could an efficient computer keep, from the
perspective of efficiency-first, i.e., efficiency comes first, and then universality is discussed and improved.

This paper discusses such trade-offs from the aforementioned perspective. As a rescue to the Curse,
we define several quasi-universal architectures under the circuit model, including typical old-age/new-
golden-age architectures. New efficient architectures with better universality have been discovered, hence
current new-golden-age architectures are not Pareto optimal. The main result of this paper is three fold:

• We clarify the Curse of universality as an important challenge to the post-golden-age computer
scientists, as universality will once again become a major concern in the new age.

• We formally define the quasi-universal architectures, which is somewhere in between the universal
architectures and the specialized architectures. Several quasi-universal architectures are defined
and discussed in terms of implementation costs and computational powers.

• Among the discussed quasi-universal architectures, we come to our solution: the recursive-encapsulated
(REnc) architecture, which is efficient, and universal to the maximum extent. We find that many
practical algorithms used in real-life computers are REnc compatible, thus efficiently computable
in the proposed REnc architecture.

In this study, we also argue that the future of computer architectures, including both the general-
purpose architectures (e.g., GPGPU) and the domain-specific architectures (e.g., DLP), should pay more
attention to the efficiency-first perspective.

2 Preliminaries

2.1 Notation

Asymptotic notations. As asymptotic notations have ambiguous definitions by different scholars, we
follow the convention of Knuth [7] of “Ω” in this paper. Precisely, for two functions f : N 7→ N and
g : N 7→ N, we use the following definitions.

• f (n) = o (g (n)) means for every ϵ > 0, there exists a constant N such that ∀n ⩾ N , f (n) ⩽ ϵg (n).

• f (n) = O (g (n)) means there exists ϵ > 0 and a constant N , such that ∀n ⩾ N , f (n) ⩽ ϵg (n).

• f (n) = ω (g (n)) means for every ϵ > 0, there exists a constant N such that ∀n ⩾ N , f (n) > ϵg (n),
i.e., g (n) = o (f (n)).

• f (n) = Ω (g (n)) means there exists ϵ > 0 and a constant N , such that ∀n ⩾ N , f (n) ⩾ ϵg (n), i.e.,
g (n) = O (f (n)).

Yongwei Zhao, et al. Sci China Inf Sci 3

Table 1 Symbols used in this paper

Symbol Definition Symbol Definition

G a graph X input bits x0x1 . . . xs−1

V a set of vertices Y output bits y0y1 . . . yd−1

E a set of edges Prog programming bits p0p1 . . . pn−1

C a circuit v a function, the number of gates in each capsule

{C0, C1} a family of circuits∗ w a function, the number of terminals in each capsule

Cu→C∗ circuit C is universal to the family C∗ Γn the universal family, Γn = {C | |C| ⩽ n}
|C| the size of circuit C Un Edge Universal Graph of size n

n an independent variable, n ∈ N UCn Universal Circuit of size n

s number of input bits A an architecture (Definition 2)∗

d number of output bits I implementation of the architecture, Inu→An

ΩC the basis of circuit/family C R a reference circuit family

Ω0 the standard basis {AND, OR, NOT} StaticC the Static architecture (Definition 6)

P a logic predicate Packedw the Packed architecture (Definition 7)

⊤ tautology, a predicate that always holds Slackedv,w,R the Slacked architecture (Definition 9)

SR the static predicate (Definition 5) Encv,w the encapsulated architecture (Definition 10)

Kv,w,P the capsule predicate (Definition 8) REncv,w the recursive-encapsulated architecture (Definition 11)
∗ We number the circuits in a circuit family with subscripts, and number the circuit families in an architecture with superscripts.

• f (n) = Θ (g (n)) ⇐⇒ both f (n) = O (g (n)) and f (n) = Ω (g (n)) hold.

Iterated function. We define iterated function f∗ as the number of times the function f : N 7→ N
must be iteratively applied to reduce the result less or equal to 1. A formal definition could be given in
recurrence relation

f∗ (n) =

{
0 if n ⩽ 1;

f∗ (f (n)) + 1 otherwise
(1)

We list common correspondences between f and f∗: f∗(n) = n − 1 when f(n) = n − 1, f∗(n) = log2 n
when f(n) = n

2 , f
∗(n) = log2 log2 n when f(n) =

√
n, and f∗(n) = log∗ n when f(n) = log n.

2.2 Circuit Model

Definition. Circuits can be taken as Directed Acyclic Graphs (DAGs), where the input and output
vertices carry the labels of Boolean variables, and other vertices carry the labels of gates [8]. For a circuit
C, its corresponding DAG can be represented as G = ⟨V,E⟩, where the meanings of symbols are explained
in Table 1. For conciseness, we also write C = ⟨V,E⟩ alternatively. Specifically, we have the following
definitions:

• Inputs The inputs are the s vertices without incoming edges. Input variables are labeled on these
vertices. Each input variable represents one bit of signals fed into the circuit.

• Outputs The outputs are the d vertices without outgoing edges. Output variables are labeled on these
vertices where the result bits of the circuit are assigned to. The output vertices may also carry gates.

• Gates The gates are all the vertices except inputs. Types of gates are labeled on these vertices. Each
gate represents a logic function computed over the values from incoming edges.

• Basis The basis of the circuit C, denoted by ΩC , is the set of gate types used in the circuit DAGs.
Unless otherwise specified, we assume the standard basis is used, i.e. Ω0 = {AND, OR, NOT} and a degree
(maximal gate fan-in and fan-out) of 2.

• Size The size of the circuit C, denoted by |C|, is the number of vertices |V |.
Please note that the size of a circuit C can be taken as an energy measurement of real machines.

Roughly, the energy of a real digital circuit is largely decided by the energy costs on gate charg-
ing/discharging, which is proportional to the number of gates (|C|). For a combinational circuit, its
energy is directly proportional to |C|. For a sequential circuit, we first convert it into a combinational
circuit C by repeating the combinational part Ĉ in the sequential circut running cycle (Ncycles < ∞)

times. Thus, the energy can be estimated with Energy ∼ |C| ∼ Ncycles ×
∣∣∣Ĉ∣∣∣.

Yongwei Zhao, et al. Sci China Inf Sci 4

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

𝑦1
𝑦2
𝑦3
𝑦4
𝑦5

𝑥𝑖+1

𝑦𝑖+1

Figure 1 Sorting networks as examples of the circuit model: (a) SWAP comparator built over the standard basis Ω0; (b) size-

specialized circuit for 5 inputs, where each vertical line indicates a SWAP comparator; (c) size-specialized circuit for 10 inputs; (d)

corresponding straight-line program description for (b); (e) branching program description of the same circuit as (b); after the

execution of (e), (d) is instantiated.

Power of Circuits. Unlike other universal computing models such as Finite-State-Machine (FSM)
or Turing machines, circuit model is non-uniform. Precisely, for a same problem, circuit model builds
individual circuit Cn for each size n of the problem. Therefore, a family of circuits {C1, C2, . . . } is built
for solving one problem. Specially, the family of all circuits under the size limit n is denoted as Γn, i.e.,
Γn = {C | |C| ⩽ n}.

For example, for the Sorting problem, the SortingNetwork circuit family is built to address
the same problem but with different input sizes. Figure 1(b, c) shows the individual sorting network
circuits for input size 5 and 10 respectively, where the vertical lines denotes the 2-input, 2-output SWAP
comparators as shown in Figure 1(a).

The non-uniformity suggests that circuit model is more powerful than Turing machines, the latter must
decide the problem of any size in one instance. Given circuits of size n, the decidable problem set of the
circuit model is denoted as SIZE (n). In fact, any decision problem of n input bits is in SIZE (O (2

n
/n)),

including those even undecidable by Turing machines (e.g., the Halting problem). For more details,
please refer to Example 6.4 in [9].

Descriptions. To describe a circuit, people write programs. Every circuit has a corresponding straight-
line program describing it [8]. A straight-line program is a sequence of computing steps. Each step is
formatted as (y OP x1, . . . xk), where OP identifies the operation (the type of a gate) performed on variables
x1, . . . xk, and y defines a new variable which stores the result of the current computing step. An example
converting the circuit of Figure 1(b) into a straight-line program is shown in Figure 1(d). The number of
lines of a straight-line program always equals the number of vertices in the circuit graph. Therefore, the
size of the straight-line program would be O(n log2 n) bits, since each of the computing steps requires at
least k log2 n+O(1) bits to encode.

The straight-line programs are not convenient for describing large but regular circuits, since the pro-
gram must write out every gate even if the gates are repeatedly constructed in trivial patterns. To describe
large circuits in short notations, people write branching programs. Branching programs have high-level
control flows (variables, branches and loops), take no inputs (or only a constant number of inputs, e.g.
the problem size), and instantiate a straight-line program after execution. A branching program for the
circuit in Figure 1(b) is shown in Figure 1(e).

Architecture. In computer science, architecture is often viewed as a set of constraints. We adopt this
perspective. In this paper, since we are discussing under the circuit model, the word “architecture” is
interchangeable with “the circuit family following a set of constraints”. Formal definition comes in the
next section.

2.3 Universal circuit

Definition of UC A circuit C is universal to a circuit family {C0, C1, . . . }, denoted as Cu→{C0, C1, . . . },
if C can simulate the function of any circuit in the family {C0, C1, . . . }, by properly assigning input/output

Yongwei Zhao, et al. Sci China Inf Sci 5

𝑥1 𝑥2

𝑦1

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑥1

𝑥2

𝑦1

a

b c

d

e

a

a

a

a

a

b

b

b

c

c

d

d

e

e

Figure 2 Uiversal circuit construction by the method of Leslie G. Valaint [4, 10]. (a) An example circuit C with 2 inputs, 1

output, and 2 gates. (b) U5, where the filled nodes denote poles, the small circles denote switches. (c) Embedding C into U5.

When universal gates are placed at poles, Universal Circuit is constructed.

variables. Denote the circuit under simulation as Ci. The circuit C recieves a specification of the
circuit under simulation (Prog(Ci) = p0p1p2 . . . pn−1) and the input bits to the circuit under simulation
(X = x0x1x2 . . . xs−1), then output the output bits of the circuit under simulation (Y = y0y1y2 . . . yd−1),
i.e., ∀Ci ∈ {C0, C1, . . . }, C (Prog(Ci), X) ≡ Ci(X). Prog(Ci) is called the programming bits of Ci as it
programs the circuit under simulation Ci. Specially, Universal Circuit UCn is a circuit that can simulate
the function of any circuit with a size up to n, i.e., UCn

u→Γn. From the perspective of the graph theory,
we have the following definitions.
• Γn. Γn is the set of all directed acyclic graphs with up to n vertices, where inputs, outputs and gates
are arbitrarily labeled, and at most 2 incoming edges and 2 outgoing edges are allowed for each vertice.

• Edge-embedding Edge-embedding is a mapping from directed acyclic graph G = ⟨V,E⟩ into G′ =
⟨V ′, E′⟩, where V is mapped into V ′ one-to-one, E is mapped into directed paths in E′ (all paths are
pairwise edge-disjoint).

• Edge-universal A graph Un is an edge-universal graph (EUG) for Γn, if every graph G = ⟨V,E⟩ in
Γn can be edge-embedded into Un.

• Universal Circuit Universal Circuit (UC) is a logic circuit that can be programmed to compute any
circuit up to a given size n by defining a set of programming bits Prog , i.e., ∀C ∈ Γn,UCn (Prog(C), X) ≡
C(X).

UC construction Figure 2 shows the method proposed by Leslie G. Valiant to build an universal cir-
cuit [4]. We explain the procedure of construction using the same simple circuit as a driving example [10].
The example circuit is shown in Figure 2 (a), which has two inputs, one output, and two gates.

A minimalist EUG, U5, is shown in Figure 2 (b). The EUG graph will be further translated into UC5

by placing universal gates (i.e., the universal 2-to-1 circuits) at poles. By feeding programming bits to
the switches and universal gates, any circuit in Γ5 with the same number of inputs and outputs can be
embedded into the constructed UC. As a driving example, the embedding of the example circuit is shown
in Figure 2 (c). Larger EUGs are built recursively on smaller EUGs. Please refer to [4, 10–12] for more
details.

3 The Curse of Universality

3.1 A breif history of universal computers

In 1930s, Church and Turing laid out the fundamental definition of computation. λ-calculus and Turing
machine are designed to be general abstractions for any machinery computation. Turing first used the

Yongwei Zhao, et al. Sci China Inf Sci 6

concept of Universal Turing Machine (UTM) to show that there are undecidable problems. By definition,
UTM is general to any Turing machine, just as Universal Circuit is to any circuit: the specifications and
inputs of the Turing machine are fed to the UTM, and the UTM simulates that Turing machine. So
any machinery computation can be performed by the same UTM, just given different specifications of
Turing machines, which are called programs today. In subsequent practice of building real computers, e.g.
EDVAC, von Neumann summarized the von Neumann architecture, which is still the golden model for
today’s computer technologies. The first principle of the von Neumann Architecture is “stored-program”,
which makes the machine an imitation of UTM. However, von Neumann giveth, von Neumann taketh
away. The inefficiency of such computers is also named after him, i.e. the von Neumann Bottleneck [13],
which states the relative inability of data accesses brought about by the von Neumann’s programming
style.

A more commonly used general-purpose computing model is the Random Access Machine (RAM).
At each step of the computation, the RAM model allows one or more accesses to arbitrary locations
in memory. To implement a RAM with n-bit storage in logic circuits, each of the n-bit cells must be
connected to some gates to be accessible, implying a O(n) energy cost per computational step. Therefore,
the energy cost of the RAM model is much higher. For example, comparison-based sorting of n elements
requires Θ(n log2 n) steps under the RAM model, so the energy cost will be O(n2 log2 n), which is very
inefficient.

There are more efficient computing models and computers. Since we are concerned with the efficiency
of the computation (in terms of energy cost), we discuss under the circuit model because it directly
reflects the cost to its size. The computers under this model are also proposed. In 1979, H.T. Kung et
al. implemented algorithms directly on VLSI circuits, namely systolic arrays [14], which have recently
gained renewed attention for their emerging applications in deep learning. As UTM and RAM, it is
also possible to build circuits that are universal to any circuit up to size n, such as the circuit that
solves the CircuitValueProblem (CVP, a problem well known for its P-completeness). In terms of
computational power, n-universal circuits can solve any problem in SIZE (n).

In 1976, Leslie G. Valiant proposed an asymptotically size-optimal construction for universal circuits of
size O (n log2 n) [4]. Valiant’s Universal Circuit can simulate the functionality of any circuit up to n in size
by embedding the circuit’s wires (edges) and gates (vertices) into Edge Universal Graphs (EUGs). Other
following works keep optimizing Valiant’s construction in sizes [10, 15, 16]. However, the construction
given by Valiant is already optimal within a constant multiplicative factor of the informational lower
bound. It can be seen as the optimal computing architecture implementing universality, despite the
constant factor hidden in big-O is continuously improved.

We select the Universal Circuit as the representative universal computer in this paper, because its
proven optimal efficiency is superior to other universal computers: UTM, RAM, etc. Note that being
efficient is different from being simple. There are extremely simple abstract machines and dynamic
systems that prove to be universal [17], built with just one instruction or a few simple state transition
rules. However, these machines are often inefficient. They take much more computing steps to simulate
necessary functionalities, resulting in a high power-delay-product (energy cost) when implemented in
logic circuits.

3.2 The Curse

Figure 2 illustrates how the selected universal computer (i.e. Valiant’s UC) works conceptually. In his
original 1976 paper, Valiant was optimistic about the ability to construct an universal circuit of size only
O (n log2 n), which is quite efficient, considering that the naive approach of putting all possible circuits
together without structural sharing costs roughly Ω (n!).

In this paper, however, we take a pessimistic view. We illustrate our point with an intuitive example:
Figure 3 implements Valiant’s UC in a logic circuit diagram. Together with the example circuit in Figure
2(a) with two gates, as shown in the upper right box. Note how an incredible number of gates are paid to
universally embed circuits with at most two gates. We annotate the gates corresponding to the function
of the original gates from the upper right corner, and all other gates are just (as P. Kelly phrased) Turing
tariffs [18] – excessive costs paid for universality.

This example shows a huge constant factor hidden in Valiant’s big-O notation. The real problem,
however, is that the proportion of Turing tariffs grows with size, as UC scales asymptotically worse than

Yongwei Zhao, et al. Sci China Inf Sci 7

Figure 3 Implementation of UC5(s = 2,d = 1) using Valiant’s construction, embedding the example from Figure 2(a) shown in

the top-right corner box. X = x0x1 are from the left and Prog = p0p1 . . . p18 are from the top, Y = y0 are to the right. Gates

forwarding bits are annotated in grey, while others constitute universal gates. The gates performing the actual computation from

the original circuit (gate a and gate b) are annotated in colors.

its specialized counterparts, i.e., Θ (n log2 n) vs. n. There is a huge performance-per-Watt headroom in
the exa-scale, post-Moore’s-law era [19], which was paid for unnecessary universalities.

UC is already an optimal universal computer, and its asymptotic size cannot be further improved. An
informational lower bound can simply be derived from the uncertainty of the circuits to be embedded.
For a random circuit with n gates, each gate provides a new variable for the input to the subsequent
gates, so there are more than Ω (n!) circuits to be embedded. UC must first decide which to embed,
encoding possible circuits requires log2 Ω (n!) ≃ Ω (n log2 n) bits of information, and each bit has to be
connected to some gates. Therefore, the size of UC is lower-bounded by Ω (n log2 n), which cannot be
improved asymptotically.

As analyzed above, computing functions through UC is much less efficient than using specialized
circuits. This gap between UC and specialized circuits is due to the reduction in informational entropy
required to implement universality, and is inevitable for any architecture that implements universality
(not just for Valiant’s UC), hence the term “the Curse of universality”. The Curse implies that it is
impossible to build a computer in logic circuits that is both efficient and universal. By saying “universal”,
it means “able to compute any problem in SIZE(n)”; by saying “efficient”, it means “cost-optimal within
a constant multiplicative factor of n”.

Definition 1 (The Curse). It is impossible to build a computer in logic circuits that is both universal
and efficient.

3.3 The unnecessity in the universality

The main reason for the Curse is unnecessary universality. Roughly speaking, the universality of the
previous definition requires that the circuit C implements all the functions of the circuits in Γn, i.e.,
C u→ Γn = {C ′ | |C ′| ⩽ n}. However, we argue that most circuits in Γn are not necessary, since they are
usually not produced by human.

From a programming point of view, most circuits are not programmable, i.e. they cannot be built by
writing short branching programs because there are not enough short programs. Here a short program
is defined as having a length within a constant multiple of the logarithmic circuit size, i.e. c log2 n bits,
where c is a constant factor and n is the circuit size. We always assume that programs written by human
are short and within a constant length in terms of lines of source code. Since each step of the straight-line
program requires k log2 n + O(1) bits to encode, the size requirement of the short program we define is
set to c log2 n bits (approximately corresponding to c/k lines of source code). We formalize the argument
as follows.

Theorem 1 (Almost all circuits are not programmable). The fraction of circuits in Γn that can be
described by short programs is at most 2−n+1nc+2n!−2, where c is a constant factor.
Proof. (1) Total number of circuits. Each computing step in a straight-line program (over the standard
basis Ω0) can have one input (the NOT gate) or two inputs (the AND gate and the OR gate). The input can
either be the output of a previous computing step, or one of the s input variables. The operation can
either be AND, OR or NOT. We fix the output to be the result of the last gate, doing so yields a conservative
estimate of the total number of circuits. There are at least 2(i+s)2+(i+s) possibilities for the (i+1)-th

Yongwei Zhao, et al. Sci China Inf Sci 8

computing step. For a circuit of size n, the corresponding straight-line program must contains n−s steps.
The possible combinations of the steps are the product of the possibilities in each step, that are at least

n−s−1∏
i=0

2(i+ s)2 + (i+ s) =

n−1∏
i=s

2i2 + i ⩾
n−1∏
i=s

2i2 = 2n−s

(
(n− 1)!

(s− 1)!

)2

Therefore, the number of circuits of size n with s input variables is at least 2n−s(n−1)!2(s−1)!−2. Since
s can be any number from 1 to n, the size of Γn can be approximated as the sum over different choices
of s:

|Γn| ⩾
n∑

s=1

2n−s

(
(n− 1)!

(s− 1)!

)2

= 2n−1(n−1)!2
n−1∑
s=0

1

2ss!2
= 2n−1(n−1)!2×[1, 1.566082929756350537292 . . .]

The series
∑n−1

s=0
1

2ss!2 equals 1 if only the first term is evaluated. When n → ∞, the infinite series is

equal to I0(
√
2) ≈ 1.566, where Iα(x) is the modified Bessel function of the first kind. We conservatively

choose 1 as the lower bound, while it shows that our approximation at this step is quite tight.
(2) Fraction of programmable circuits. However, at most 2c log2 n = nc programs can be expressed by

no more than c log2 n bits. Due to the pigeonhole principle, the fraction of the circuits in Γn can be
expressed is Prob(n, c) where

Prob(n, c) = nc |Γn|−1 ⩽ 2−n+1nc(n− 1)!−2 = 2−n+1nc+2n!−2

□

The resulted approximation of the fraction decreases very fast with n, for example when n = 10, c = 10
the approximated fraction is about 0.015%, but increasing n to 12 reduces the fraction to 1.9 × 10−8.
As proved that almost none of the circuits in Γn are useful, the conventional definition of universality is
not helpful in studying the relationship between universality and efficiency. Therefore, in the following
sections, we apply appropriate constraints to focus only on necessary universality, i.e., quasi-universal
architectures.

3.4 Architectural Universality and Quasi-Universality

Before diving into specific architectures, we formalize the concepts of architectural universality and quasi-
universality that this paper refers to. We say the architecture is universal if the n-th circuit implementa-
tion embeds Γn for all n, such as Valiant’s UC. Since an architecture is a series of circuit families subject
to certain constraints, the definition can be formalized as follows.

Definition 2 (Architecture). Architecture A = ⟨B,P ⟩ is a series of circuit families A0, A1, A2, . . . , where
each circuit family is a subset of the base Bn subject to a set of constraints P , i.e. An = {C ∈ Bn |P (C)}.
A circuit family I = {I0, I1, I2, . . . } is an implementation of architecture A if, for every instance In ∈
I, Inu→An.

Definition 3 (Universal Architecture). A circuit family C = {C0, C1, C2, . . . } is universal if it imple-
ments Γ, i.e., ∀n ∈ N, Cn

u→Γn. An architecture A is universal if all implementations of A are universal.
As for quasi-universal architectures, the requirements are relaxed. For Γn to be embedded, it is indeed

embedded in some instantiated circuit implementation of the architecture, but possibly latter than the n-
th instance. The universality of this relaxed form allows some circuits in Γn to be embedded in subsequent
instances of the implementation (the Ω(n)-th, larger instances). Definition formalized as follows.

Definition 4 (Quasi-Universal Architecture). A circuit family C = {C0, C1, C2, . . . } is quasi-universal
if ∃f : N 7→ N,∀n ∈ N, Cf(n)

u→Γn. An architecture A is quasi-universal if all implementations of A are
quasi-universal.

We refer to the function f as the Completion Function. For simplicity, we additionally require the
completion function to be monotonic. The completion function describes the size-increments required for
a quasi-universal architecture to support a complete universality, showing a lower bound on the power of
the architecture: the f(n)-th instance of the architecture is at least as powerful as UCn.

The completion function describes the size increment required for a quasi-universal architecture to
support full universality, showing a lower bound of the architecture’s power: the f(n)-th instance of the
architecture implementation is at least as powerful as UCn.

Yongwei Zhao, et al. Sci China Inf Sci 9

New Golden Age
Architectures

Universal
Circuit

Specialized
Circuits

The Slacked

ENC

RENC

UniversalSpecialized

In
ef

fi
ci

en
t

E
ff

ic
ie

n
t

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log log 𝑛)

𝑂(𝑛)

Implementation Cost

Released Capsule Interconnection
+ Slackness

The Static

The Packed

Released
Gate Labeling

Our Proposal

impossible

Figure 4 Overview of the discussed architectures.

By definition, universal architectures are also quasi-universal, and the completion functions are the
identity function. If an architecture is not quasi-universal by definition, then it is said to be specialized.

4 Quasi-Universal Architectures

Unlike universal architectures, quasi-universal architectures prioritize one particular or a small set of
functions rather than treating all a priori possibilities of functions uniform. Therefore, these architectures
can provide better efficiency on those prioritized functions while maintaining comparable efficiency on
other functions. However, the design of architectures, i.e. deciding which part of the universality is
prioritized to portray real-world problems, is highly dependent on human intellect. In this section, we
discuss the design and cost of several architectures formed by applying different constraints to Γn, as
summarized in Table 2 and Figure 4.

4.1 The Static

The first type of constraints we apply are fixed interconnects. Since the uncertainty mainly comes from
the undetermined gate-to-gate interconnections, we fix the interconnections in each embedded circuit to
the same pattern, e.g. the same as the reference circuit family R, but the gate names are still variable.
Therefore, this architecture is denoted as the StaticR architecture. We formally define StaticR as
follows:

Definition 5 (The Static Predicate). Define the Static predicate as SR(C), whereR = {R0, R1, R2, . . . }
is the reference circuit family, and C = ⟨V,E⟩ is the circuit to be examined. Denote n = |C| as
the size of C. Denote the vertices and edges of Rn as VRn

and ERn
, respectively. The value of

Table 2 Discussed architectures and their projections in real-world architectures.

Type Constraints Projected Real-world Architectures

Universal Circuit - Programmable Logic (CPLD, FPGA)

The Static Fixed interconnections Systolic Array [14]

The Packed Packed interconnections Vector Machine (Cray), SIMD, SIMT (CUDA)

The Slacked Fixed non-trivial basic operations Accelerator (DaDianNao [20], TensorCore)

The Encapsulated (Enc) Non-trivial basic operations -

The Recursive-Encapsulated (REnc) Recursive non-trivial basic operations Cambricon-FR [21]

Yongwei Zhao, et al. Sci China Inf Sci 10

𝑥0

...𝑦0

Fixed Interconnections
(Dataflow)

#1
Universal

Gate

#2
Universal

Gate

#3
Universal

Gate

𝑥1

#n
Universal

Gate

𝑥𝑠−1

...

...

...

...

𝑦1 𝑦𝑑−1

𝑃𝑟𝑜𝑔

𝑂(𝑛) bits

Control Flow

#1
Gate

#2
Gate

#3
Gate

#n
Gate

𝑥0

𝑥1

𝑦0

𝑦1

𝑥𝑠−1

𝑦𝑑−1

(a) (b)

Figure 5 The StaticR architecture fixed the interconnections of universal gates, as the gate interconnections is in R. (a) Example

reference circuit Rn; (b) Construction of In : Inu→Staticn
R.

the predicate SR(C) is whether there exists a bijective vertice mapping f : V 7→ VRn , such that
{(f (v1) , f (v2)) | (v1, v2) ∈ E} = ERn , i.e., C and Rn are isomorphic.

Definition 6 (The Static Architecture). StaticR = ⟨Γ, SR⟩.
Then we show that the implementation cost of StaticR is Θ (n).

Theorem 2 (Cost of the Static). ∃In : |In| = Θ(n) ∧ Inu→Staticn
R.

Proof. See Figure 5. Construct the circuit In by replacing the gates in Rn with universal gates, which
could be implemented as multiplexers plus all types of gates in the basis ΩR. Then In can simulate any
circuit in Staticn

R. Since ΩR always contains only a limited types of gates (e.g. |Ω0| = 3 gates), the size
of In is with in a constant multiplicative factor of Rn, i.e., O(n). Trivially, |In| is Ω(n) by definition. □

The resulting StaticR architecture is only quasi-universal if the reference circuit family has certain
properties, which are beyond the scope of this paper. We assume these conditions are met.

With fixed interconnects, the Static architecture is very efficient. It improves the cost from O(n log2 n)
of UC to O(n), thus removed the Curse. The price is a very narrow prioritizing set, since any circuit
interconnected differently than Rn will not be embedded in the n-th instance.

The best possible completion function is Θ(n log2 n), which occurs when the reference circuit family
is universal circuits, i.e., ∀i, Ri ≡ UCi. However, despite providing a theoretical lower bound for the
completion function, an architecture that prioritizes UC may not actually make sense. A more represen-
tative example of a reference circuit family is meshes, and such circuits can also be seen as temporally
unrolled systolic architectures. When reference circuits are 2D-meshes, the best completion function is
Θ(n2): O(n2) is achieved using orthogonal grid drawing techniques such as [22], and Ω(n2) is required
due to [23].

4.2 The Packed

Since fixing interconnects is too strong a constraint, we apply the second constraint only on the patterns
of interconnects, rather than fixing them completely. Vectorization is the most common way to constrain
interconnections in practice. The Packedw architecture requires that each w(n)-bit of data is packed
as an vector, and the data in each vector is always forwarded together. From the information lower
bound, for UCn, the free interconnection between n gates brings about O(n!) uncertainty, so it requires
O(n log2 n) information bits to determine the embedded circuit. But for Packedn

w, the uncertainty is
reduced from O(n!) to O(n/w(n)!) for free forwarding n/w(n) vectors. Therefore, the informational bound
is relaxed from Ω(n log2 n) to Ω(n/w(n) log2 n/w(n)). If w(n) = log2 n, then the bound will be Ω(n), i.e. the
Curse is no longer guaranteed by the information bound. We formally define the Packedw architecture
as follows.

Definition 7 (The Packed Architecture). Packedw = ⟨Γ, P ⟩, where w : N 7→ N is the function that
decides the length of the vector given the circuit size, and the P (C) predicate is defined as the existence

Yongwei Zhao, et al. Sci China Inf Sci 11

...
#1 UC𝑛/𝑤(𝑛)

Size:
Ω(Τ𝑛 𝑤(𝑛) log 𝑛)

#2 UC𝑛/𝑤(𝑛)

Size:
Ω(Τ𝑛 𝑤(𝑛) log 𝑛)

Shared
Controller

Size: S

#𝑤(𝑛)
UC𝑛/𝑤(𝑛)

Size:
Ω(ൗ

𝑛
𝑤(𝑛) log 𝑛)

#1 UC𝑛/𝑤(𝑛)

Size:
Ω(Τ𝑛 𝑤(𝑛) log 𝑛)

#2 UC𝑛/𝑤(𝑛)

Size:
Ω(Τ𝑛 𝑤(𝑛) log 𝑛)

#𝑤(𝑛)
UC𝑛/𝑤(𝑛)

Size:
Ω(ൗ

𝑛
𝑤(𝑛) log 𝑛)

...

...

...

...

𝑋0 𝑃𝑟𝑜𝑔

𝑛

𝑤(𝑛)

Ω(ൗ𝑛 𝑤(𝑛) log 𝑛)

...

...

...

Ω(ൗ𝑛 𝑤(𝑛) log 𝑛)

Ω(ൗ𝑛 𝑤(𝑛) log 𝑛)

𝑛

𝑤(𝑛)

𝑛

𝑤(𝑛)

𝑋1 𝑋𝑤 𝑛 −1

𝑌0 𝑌1 𝑌𝑤 𝑛 −1

𝑃𝑟𝑜𝑔

𝑛

𝑤(𝑛)

𝑛

𝑤(𝑛)

𝑛

𝑤(𝑛)

𝑛

𝑤(𝑛)

𝑛

𝑤(𝑛)

𝑛

𝑤(𝑛)

𝑌0 𝑌1 𝑌𝑤 𝑛 −1

𝑋0 𝑋1 𝑋𝑤 𝑛 −1

𝑃𝑟𝑜𝑔’
Ω(ൗ𝑛 𝑤(𝑛) log 𝑛)

𝑛

𝑤(𝑛)

𝑛

𝑤(𝑛)

𝑛

𝑤(𝑛)

(a) (b)

Figure 6 Vectorization does not remove the Curse. (a) Implementation via decomposition into w(n) independent lanes; (b) Saving

some gates by building a shared controller, while the informational bound still applies to each lane.

of C ′ ⊆ C, such that C is a disjoint union of w (|C|) isomorphic copies of C ′.
Unfortunately, despite the relaxation of information bounds by vectorization, the Packed architecture

still cannot remove the Curse, since when implemented in logic circuits, the asymptotic cost of vector-wise
forwarding is no less than bit-wise forwarding. We formalize the argument as the following theorem.

Theorem 3 (The Packed is not efficient). ∀In : Inu→Packedn
w ∧ w(n) = o(n) → |In| = Ω(n log2 n).

Proof. Without loss of generality, we consider the implementation as aligned SIMD execution units
that perform bitwise operations on input variables. The n vertices in the circuit graph are packed into
n/w(n) vectors, w(n) in each. The implementation can decompose along intra-vector offsets, since bits
from different intra-vector offsets never interact. Figure 6(a) shows such a decomposition, where the
implementation is divided into w(n) lanes, and in each lane a universal circuit UCO(n/w(n)) is required.

Since in each lane there are
∣∣UCO(n/w(n))

∣∣ = Ω(n/w(n) log2 n/w(n)) gates, w(n) lanes have a total of
Ω (n log2 n/w(n)) gates. Since w(n) = o(n), the w(n) in the denominator of the logarithm will be hidden
by the asymptotic notation, i.e., Ω (n log2 n/w(n)) = Ω (n (log2 n− log2 w(n))) = Ω (n log2 n).

The implementation shown by decomposition is optimal within a constant multiplicative factor, since
putting independent variables together doesn’t save anything. The only gates that can be saved are those
that depend only on shared inputs (i.e., programming bits). One can extract the saved gates from lanes,
and combine them into a shared controller. However, this does not change the asymptotic size of each
lane. As shown in Figure 6(b), after the shared controller is extracted, the processed programming bits
Prog ′ connected to each lane are still bounded by the informational entropy, i.e. Ω (n/w(n) log2 n/w(n)).
Each processed programming bit must connect into some gates, hence the size bound Ω (n/w(n) log2 n/w(n))
for each lane still applies. □

The completion function for the Packed architecture is obviously nw(n): by using only the first bit
in the vector, an instance of Packednw(n) degenerates to UCn.

The Packed architecture in industry has been developed since the 1970s when vector machines (e.g.
Cray-1) were created for supercomputing. SIMD and SWAR instructions (e.g. Intel MMX) have been
implemented in desktop processors since the 1990s. It has also been at the heart of GPGPU efficiency,
starting with the release of CUDA by NVIDIA in 2007, until it was succeeded by TensorCore. Today,
Intel is still releasing packed instructions to accelerate deep learning workloads, such as the AVX512VNNI
extension. However, since packed instructions only perform trivial operations, the cost of PRF access
becomes a major bottleneck for efficiency. Thus, the industry has moved to the next, ushering in a new
golden age of computer architecture [1].

4.3 The Slacked

Since vectorization cannot reduce the overall size of the EUG, the number of bits forwarded in the EUG
must actually be reduced in order to build an efficient architecture. We introduce slackness, i.e., for each
w(n) bits forwarded in the EUG, v(n) = ω (w (n)) gates are required to compute over the w(n) = o (v (n))

Yongwei Zhao, et al. Sci China Inf Sci 12

...

𝑃𝑟𝑜𝑔

... EUG
𝑈 Τ𝑛𝑤(𝑛) 𝑣(𝑛)

Size:

𝑂
𝑛𝑤(𝑛)

𝑣(𝑛)
log

𝑛𝑤(𝑛)

𝑣(𝑛)

Τ𝑛 𝑣(𝑛)

Capsule(𝑣(𝑛))

𝑤(𝑛) bits

𝑋

𝑌

#2
Capsule(𝑣(𝑛))

#1
Capsule(𝑣(𝑛))

#1 bit

#2 bit

...

Γ𝑛′

Cost:
𝑂 𝑛′ log 𝑛′

𝑂(𝑛′ log 𝑛′) bits

ENC Capsule(𝑛′)SLACKED Capsule(𝑛′)

𝑂(𝑛′) bits

#1 bit

#2 bit

#𝑤(𝑛) bit

...

STATIC𝑛′

Cost:
𝑂 𝑛′

#1 bit

#2 bit

...

RE 𝑣,𝑤
𝑛′

Cost:
𝑂 𝑛′ 𝑣∗ 𝑛′

RENC Capsule(𝑛′)

𝑂 𝑛′ 𝑣∗ 𝑛′ bits

𝑤(𝑛) bits

𝑤(𝑛) bits
#𝑤(𝑛) bit #𝑤(𝑛) bit

(a) (b) (c) (d)

...

𝑃𝑟𝑜𝑔

... EUG
𝑈 Τ𝑛𝑤(𝑛) 𝑣(𝑛)

Size:

𝑂
𝑛𝑤(𝑛)

𝑣(𝑛)
log

𝑛𝑤(𝑛)

𝑣(𝑛)

𝑤(𝑛) bits

𝑋

𝑌

𝑤(𝑛) bits

𝑤(𝑛) bits ...

...

𝑃𝑟𝑜𝑔

... EUG
𝑈 Τ𝑛𝑤(𝑛) 𝑣(𝑛)

Size:

𝑂
𝑛𝑤(𝑛)

𝑣(𝑛)
log

𝑛𝑤(𝑛)

𝑣(𝑛)

EUG
𝑈𝑣 𝑛 +𝑤(𝑛)

𝑤(𝑛) bits

𝑋

𝑌

𝑤(𝑛) bits

𝑤(𝑛) bits

UG

... 𝑣(𝑛)

bits

UG

...

UG

... 𝑣(𝑛)

bits

UG

...

UG

... 𝑣(𝑛)

bits

UG

EUG
𝑈𝑣 𝑛 +𝑤(𝑛)

EUG
𝑈𝑣 𝑛 +𝑤(𝑛)

...

...UG UG UG

...UG UG UG

𝑣(𝑛) universal gates

...

...UG UG UG

...UG UG UG

𝑣(𝑛) universal gates

...

...UG UG UG

...UG UG UG

𝑣(𝑛) universal gates

......

EUG
𝑈 Τ𝑛𝑤(𝑛) 𝑣(𝑛)

Size:

𝑂
𝑛𝑤(𝑛)

𝑣(𝑛)
log

𝑛𝑤(𝑛)

𝑣(𝑛)

𝑤(𝑛) bits

𝑌

𝑤(𝑛) bits

𝑃𝑟𝑜𝑔𝑋

(e) (f) (g)

Figure 7 Efficient quasi-universal architectures: the Slacked (subfigures (a) and (b)), the Encapsulated (Enc, subfigures (a) and

(c)), and the Recursive-Encapsulated (REnc, subfigures (a) and (d)). Subfigures (e), (f), and (g) show the detailed implementation

in the capsules, respectively.

bits, without any other incoming/outgoing wires. Denote the slacked architecture as Slackedv,w,R. We
formally define the architecture as follows.

Definition 8 (The Capsule Predicate). Define the capsule predicate as Kv,w,P (C), where C = ⟨V,E⟩
is the circuit to be examined, v : N 7→ N is the function deciding the maximum size of each capsule
given the size of C, w : N 7→ N is the function deciding the maximum number of terminals of each
capsule given the size of C, and P is the sub-predicate to examine over each capsule. Denote n = |C|
and k = n/v(n). The value of the predicate Kv,w,P (C) is whether there exists a set of sub-circuits
C∗ = {⟨V1, E1⟩ , ⟨V2, E2⟩ , . . . , ⟨Vk, Ek⟩}, such that the following conditions are satisfied:

1. (Properly partitioned into capsules.) C∗ is a (k, 1) graph partition of C;

2. (Each capsule has v-limited gates.)
∧

Ci∈C∗
|Ci| ⩽ v(n) holds;

3. (Each capsule has w-limited in-/outgoing terminals.) Let E(i,j) = {(v1, v2) ∈ Vi × Vj | (v1, v2) ∈ E},
∀i ⩽ k,

∑k
i ̸=j=1

∣∣E(i,j)

∣∣+ ∣∣E(j,i)

∣∣ ⩽ w(n);

4. (Each capsule meets the sub-predicate.)
∧

Ci∈C∗
P (Ci) holds.

For completeness, Kv,w,P is defined as tautology ⊤ when k = 1 and P = Kv,w,P , i.e., when the capsule
predicate evaluates to itself.

Definition 9 (The Slacked Architecture). Slackedv,w,R = ⟨Γ,Kv,w,SR
⟩.

Roughly, the uncertainty in the Slackedv,w,R architecture is reduced from O(n!) to O(nw(n)/v(n)!),
when v(n) = Ω (w(n) log2 n) the informational bound is relaxed from O(n log2 n) to O(n). Different from

Yongwei Zhao, et al. Sci China Inf Sci 13

the Packed, the Slacked architecture can actually save gates since the size of EUG is reduced. We
formalize the argument as follows.

Theorem 4 (Cost of the Slacked). v(n) = Ω (w(n) log2 n) → ∃In : Inu→Slackedn
v,w,R ∧ |In| = O(n).

Proof. Figure 7(a, b) shows an implementation. The n gates to be embedded are divided and organized

as n/v(n) capsules, and each capsule contains v(n) gates organized as an instance of Static
v(n)
R . Each

capsule has w(n) terminals for incoming/outgoing bits. The universal interconnects between all terminals
are provided through an Edge Universal Graph (EUG) Unw(n)/v(n), which provides nw(n)/v(n) terminals.
The size of each capsule is O(v(n)), and the size of Unw(n)/v(n) is O (nw(n)/v(n) log2 nw(n)/v(n)). The total
cost is O(n) if v(n) = Ω(w(n) log2 n). □

For simplicity, we omit the parameters v and w in the notation when w(n) = Θ(log2 n) and v(n) =
Θ (w(n) log2 n), and also omit the capsule reference R when not discussing a particular reference circuit
family.

On the downside, the Slacked increases the cost of trivial operations, because most gate embeddings
in the capsules are wasted when only o(v(n)) gates are used per w(n) bits. For example, imagine a
situation where scalar/vector arithmetic needs to be padded with zeros to take advantage of a processor
with only matrix units. But for circuits built primarily of non-trivial operations, once the capabilities of
the capsules are fully utilized, the Slacked architecture will be much more efficient than the Packed.
In the industry, the most notable instance of the Slacked architecture is the TensorCore introduced in
the NVIDIA Volta, 2017. Compared to conventional CUDA units, TensorCore units (capsules) perform
non-trivial computations on low-precision input data, delivering state-of-the-art performance for deep
learning workloads.

So far we have shown that the Slacked prioritizes circuits built mainly with non-trivial operations
and can be implemented at O(n) cost, thus removed the Curse. The completion function for the Slacked
architecture is nv(n) in the worst case, similar to the deduction for the Packed by using only one gate
per capsule. However, better completion functions are possible if a detailed specification is given. For

example, Slackedn
log2

2n,log2 n,2DMesh (Slackedn with Static
log2

2n
2DMesh capsule) has a completion function

O(n log2 n), since each capsule is known to be Θ (log2 n)-universal as discussed earlier.

4.4 The Encapsulated (Enc)

Here, we propose the Encapsulated (Enc) architecture that further releases constraints. Unlike the
Slacked architecture that fixes interconnects inside capsules, Enc releases them. Enc only encapsulates,
requiring v(n) gates in each capsule to share w(n) terminals, i.e. preserving the wire locality requirement.
Slackedv,w,R is transformed to Encv,w by releasing interconnects inside capsules: as shown in Figure 7(a,

c), the capsule of Encv,w is Γv(n) instead of Static
v(n)
R . Therefore, each v(n) gates can connect to each

other without restriction, but any incoming/outgoing wires beyond these gates are limited by the w(n)
terminals per capsule. The Enc enabled more flexible connections. We give a formal definition as follows.

Definition 10 (The Enc Architecture). Encv,w = ⟨Γ,Kv,w,⊤⟩.
The added cost per capsule increases the total asymptotic cost by a factor of O(log2 v(n)). Specifically,

when v(n) = Ω (w(n) log2 n), it is O(log2 log2 n) times. Although Encv,w does not completely remove
the Curse, it still reduces the cost to O (n log2 log2 n) gates and imposes the most relaxed constraints.
The cost can be formalized as follows.

Theorem 5 (Cost of the Enc). v(n) = Ω (w(n) log2 n) → ∃In : Inu→Encn
v,w ∧ |In| = O (n log2 v(n)).

Proof. Trivial after Theorem 4. The EUG part keeps the same. Capsule size increased by O(log2 v(n))
times, hence the total size increased to O(n log2 v(n)). □

The completion function for the Encv,w architecture is nv(n)/w(n), by using each capsule as a UCw(n).

4.5 The Recursive-Encapsulated (REnc)

Since the extra double-logarithmic factor in the cost formula of Enc is due to the fact that Enc allows
free connections within capsules, we can recursively apply the encapsulating constraint in the capsules,
then in the capsules of capsules, and then in the capsules of capsules of capsules, and so on. In the
process of recursive encapsulation, the Curse is divided into smaller and smaller granularities, eventually
reducing the Turing tariff to almost arbitrarily small asymptotically, i.e. down to a triple-logarithmic

Yongwei Zhao, et al. Sci China Inf Sci 14

factor, then a quadruple-logarithmic factor, and then a quintuple-logarithmic factor, and so on. We refer
to the infinitely recursively encapsulated architecture as REnc. As shown in Figure 7(a, d), the REnc
capsule is a smaller REnc instance, instead of a UC in Enc. We formalize the architecture as follows.

Definition 11 (The REnc Architecture). REncv,w = ⟨Γ, P ⟩ where P = Kv,w,P .

Theorem 6 (Cost of the REnc). v(n) = Θ (w (n) log2 n) → ∃In : Inu→REncn
v,w ∧ |In| = O (nv∗ (n)).

Proof. The encapsulation recursively applies v∗ (n) times, each time introducing a level of EUG, as
shown in Figure 7(a). Following Theorem 4, each EUG costs Θ(n). The recurrence formula of |In| can
be written as

|I1| = O(1) (1)

|In| =
n

v(n)

∣∣Iv(n)∣∣+Θ(n) (2)

The recurrence formula can be expanded by formula (2) v∗ (n) times before reaching (1), each time
bringing out an additive term Θ(n). Therefore, |In| = O (nv∗ (n)). □

Specifically, when w(n) = Θ(log2 n) and v(n) = Θ (w (n) log2 n), the cost to implement REncn
v,w is

O(n log∗ n). We claim thatREnc can remove the Curse because O(log∗n) grows so slowly – For any circuit
that can be constructed in the known universe, log∗2 n ⩽ 5, and thus can be safely treated as a constant
factor in practice. Curse can also be perfectly removed by letting v(n) grow slightly faster w.r.t. w(n),
say v(n) = Ω (w (n) log2 n log∗ n); alternatively, by letting w(n) be polylogarithm, say w(n) = log2

bn
and v(n) = log2

an, a > b + 1. The cost per EUG will be slightly reduced to O(n/log∗ n), so the cost of
REnc will be exactly O(n).

The completion function of the REnc architecture remains the same as the Enc, i.e., nv(n)/w(n).

4.6 Power of the Quasi-Universal Architectures

In this section we discuss the power of the proposed quasi-universal architectures. Quasi-universal archi-
tectures are modified a priori probability distributions over Γ. They injected human intelligence to better
characterize real-world problems, rather than treating equally as randomized problems like the proof of
Theorem 1. Theorem 1 is an imitation of Kolmogorov’s incompressibility theorem, which states that
almost all strings are incompressible. However, compression algorithms like LZW do work because they
capture the characteristics behind real-world data. Similarly, we expect the quasi-universal architectures
to work like ”compressors” of circuits by prioritizing real-world circuits. For example, the Static2DMesh

architecture prioritizes circuits where each gate is only locally connected to its nearest neighbours. The
Slacked, the Enc, and the REnc are capsule-based quasi-universal architectures that prioritize circuits
with dense local connections but sparse global connections, i.e., locality. The Slacked shows that build-
ing the circuits with non-trivial basic operations can be a rescue, as it implies locality in the computing
scheme. The Enc further releases the connections inside capsules but keeps the locality, then the REnc
extends locality to a scale-invariant property.

The power of the Static and the Packed arhchitectures is straightforward, as many practical archi-
tectures follow their constraints. To understand the power of capsule-based architectures, the capsule
predicate (Definition 8) is the key. It is the capsule predicate that implies locality, and it is real, since it
has been observed in VLSI engineering as Rent’s Rule [24].

4.6.1 The Capsule Predicate

We illustrate the capsule predicate (Definition 8) Kv,w,P . Figure 8(a) shows a circuit (n = 16). Without
the dotted wire x, we show how to partition the vertices (gates or inputs) into capsules, where each
capsule has at most v = 4 vertices, w = 2 incoming/outgoing wires (a, b, c, d). As the partition exists, we
say the shown circuit follows K4,2,⊤. However, if we add the dotted wire x into the circuit, it will violate
K4,2,⊤ since such a partition will not exist anymore.

K4,2,⊤ is both necessary and sufficient for the membership in Encn
4,2, and is necessary for the mem-

bership in Slackedn
4,2 and REncn

4,2. The latter two architectures additionally require every capsules to
follow a sub-predicate, i.e., SR for Slackedn

4,2 and K4,2,K4,2,K...
for REncn

4,2. These additional require-
ments are to be understood separately per capsule, hence here we do not dive into.

Figure 8(b) shows how to implement a capsule-based architecture, please also compare with Figure 7.
The EUG U8 provides w = 2 terminals for each capsule, each terminal can embed either an incoming

Yongwei Zhao, et al. Sci China Inf Sci 15

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡6

𝑡7

𝑡8

Capsule(4)

Capsule(4)

Capsule(4)

Capsule(4)

𝑤 𝑛 =2 bits

𝑤 𝑛 =2 bits

𝑤 𝑛 =2 bits

𝑤 𝑛 =2 bits

Capsule 1

Capsule 2

Capsule 4

Capsule 3 𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡6

𝑡7

𝑡8

Capsule 1

Capsule 2

Capsule 3

Capsule 4
EUG 𝑈8 EUG 𝑈8

a

b

c

d

x

a
a

a

a

a

a

a

aa

b b

b

b

b

b

b

bb

c
c c

c

c

c

cc

d d
d

d

dd

Figure 8 A minimal example showing the power of encapsulation. (a): Circuit following the capsule predicate K4,2,⊤ (Defini-

tion 8) w/o the dotted wire x, but adding the dotted wire x will inevitably violate K4,2,⊤, because no partitions can keep the

crossing wires within w(n) = 2 for every capsule. (b): The implementation of a capsule-based quasi-universal architecture that

constrains K4,2,⊤ (the Slacked16
4,2, the Enc16

4,2, and the REnc16
4,2), corresponding to Figure 7(a). (c): Embedding (a) into (b), the

embedded wires are annotated in colors a, b, c, d.

wire or an outgoing wire. U8 also provides universal interconnection between terminals. Therefore, for
any circuit that follows K4,2,⊤, U8 can embed all interconnects across the capsule. Figure 8(c) shows the
embedding of (a), and it can be easily observed that there is no more space to embed the dotted wire x.
Capsules will be implemented separately based on their required sub-predicates, so we won’t show the
implementation inside capsules here either. Specifically, to understand the Enc architecture, imagine a
Valiant’s UC built inside each capsule; to understand the REnc architecture, imagine an implementation
similar to Figure 8(c) but of different sizes built recursively in each capsule.

4.6.2 Bounds of Powers

Table 3 summarizes the costs and completion functions of the discussed architectures. The complete cost
is the composite of the two, indicating worst-case cost when conventional universality is required.

REnc preserves universality to the greatest extent, since relaxing any constraints in REncn will result
in worse cost. However, there are still some common problems that cannot be efficiently computed in
the REnc. We define a new complexity class REnc(n) as the set of problems that circuits in REncn can
compute, and show some basic relations to several complexity classes.

Theorem 7. There exists a sorting network for O(n log2 log2 n/log2
2n) bits in REncn.

This is due to R. Beigel et al. [25] that an n-sorter can be built from O(n/k logk n) k-sorters for any
n and k. As a corollary, for k = w(n) = log2 n, there are O(n/log2 log2 n) k-sorters each embedded in an
REnc capsule. This result is comparable to, when embedded in UCn, the O(n/log2

2n)-bit bitonic sorters
or Batcher’s sorting networks, which are considered as the best practical sorting circuits. The result
shows that REnc is quite efficient for sorting.

However, it is unlikely one can embed larger sorting networks into REncn through AKS-like con-
structions. Although we still leave this question open. AKS sorting networks [26] (and its variants) are
asymptotically optimal, but impractical due to huge constant factors. The difficultly is that sorting only
have a decomposability factor of O(log2 n), so most gate-embeddings in the REnc capsules are certainly
wasted due to the lack of locality, assming the capsules perform sorting as well (either the even weaker
halving operations used in AKS).

Theorem 8. SIZE(n/log2 n) ⊂ REnc(n).

Trivial lower bound due to the completion function. The containment can be shown by the embedding
of a smaller UC (i.e. UCn/log2 n) in REncn. Despite the capsules in REnc can embed up to v(n) gates,
we use only w(n) of them, and fill other gate-embeddings and switches with padding. Afterwards, the

Yongwei Zhao, et al. Sci China Inf Sci 16

Table 3 Asymptotic comparison of quasi-universal architectures

Architecture Cost Completion Function Complete Cost

Universal

Γ Θ(n log2 n) n Θ(n log2 n)

The Static

StaticUC Θ(n) Θ(n log2 n) Θ(n log2 n)

Static2DMesh Θ(n) Θ(n2) Θ(n2)

The Packed

Packedlog2 n Θ(n log2 n) Θ(n log2 n) Θ(n log2
2n)

The Slacked

Slackedlog2
2n,log2 n Θ(n) Θ(n log2 n) Θ(n log2 n)

The Encapsulated

Enclog2
2n,log2 n O(n log2 log2 n) Θ(n log2 n) O(n log2 n log2 log2 n)

The Recursive-Encapsulated

REnclog2
2n,log2 n O(n log∗ n) Θ(n log2 n) O(n log2 n log∗ n)

REnclog2
an,log2

bn, a > b+ 1 Θ(n) Θ(n log2 n) Θ(n log2 n)

REncn instance degenerates to UCnw(n)
v(n)

[16].

Finding one problem in REnc(n) but not in SIZE(n/log2 n) is sufficient to show that the containment is
proper. For example Theorem 7 applied here, sorting O(n log2 log2 n/log2

2n) variables is in REnc(n) but not
in SIZE(n/log2 n).

Theorem 9. REnc(n) ⊂ SIZE(n).

This is obvious since REnc is obtained by applying constraints on UC, its functionality is a subset of
UC’s. The Curse says the containment is proper due to the o(n log2 n) cost of REnc.

5 Discussion

One of the major challenges for efficiency-first researches is to quantify universality. Hennessy and
Patterson, who claimed the new golden age in their Turing lecture, provided a systematic quantitative
approach for computer architecture research (certainly, quantifying efficiency for universality-first re-
search). Although this paper defines the completion function for quasi-universal architectures, herein, we
only describe a trivial lower bound for universality. The quantification of universality is still an important
open question.

Several deep learning processors are initiated by the quasi-universal architectures (especially the
REnc), including the Fractal von Neumann Architecture (FvNA) [27] and the Functional Instruction
Set Computers (FISC) [Zhiwei Xu, personal communication]. Cambricon-FR [21] is an implementation
of FvNA. Initiated by the REnc, Cambricon-FR decomposes non-trivial instructions recursively and
allows universal control over each hierarchy. Such a design has led to great reductions in the size of
programs required as the REnc does. To further cut down the size of programs, Cambricon-FR requires
the decomposed instructions to keep their name and are therefore fractal. As a result, Cambricon-FR
can address the programming productivity issue encountered in the industry of deep learning processors.
However, applying the REnc architecture directly in real processors could be challenging. There are
two major difficulties. The first is due to the fact that the circuit model we used corresponded only to
combinational logic circuits. It is left for future works to make the REnc effectively implemented in
sequential logic circuits. The second is due to the programming limitations. In this work, we are only
able to prove that programming the implementation of the REnc is possible, but it is still not clear how
to program it under a reasonable time budget.

The discussed architectures are not only a set of processor design guidelines. We expect the possible
application of quasi-universal architectures in the field of inductive inference.

Yongwei Zhao, et al. Sci China Inf Sci 17

6 Conclusion

In the new golden age of computer architecture, computer scientists traded off universality for optimal
efficiency. However, we predict that for post-golden-age computers, universality will once again become
a major concern. The Curse says universal computers cannot be efficient, hence we define quasi-universal
architectures as a rescue. Quasi-universal architectures (such as the proposed REnc) can solve any com-
putable problem and are efficient for a wide range of problems. The discovery of the REnc architecture
suggests that current new-golden-age architectures are not Pareto optimal.

Acknowledgements This work is partially supported by the National Key Research and Development Program of China

(under Grant 2018AAA0103300), the NSF of China (under Grants 61925208, 62102398, U19B2019), Strategic Priority

Research Program of Chinese Academy of Science (XDB32050200), Beijing Academy of Artificial Intelligence (BAAI) and

Beijing Nova Program of Science and Technology (Z191100001119093), CAS Project for Young Scientists in Basic Research

(YSBR-029), Youth Innovation Promotion Association CAS and Xplore Prize. The authors would like to thank the editors,

three anonymous reviewers, Dr. Qian Li from ICT, CAS, and Yu Xia from PKU for their constructive comments in relation

to this work.

References

1 John L Hennessy and David A Patterson. A new golden age for computer architecture. Communications of the ACM,

62(2):48–60, 2019.

2 A. M. Turing. On computable numbers, with an application to the entscheidungsproblem. Proceedings of the London

Mathematical Society, s2-42(1):230–265, 1937. Correction ibid. 43, pp 544-546 (1937).

3 J. von Neumann. First draft of a report on the EDVAC. IEEE Annals of the History of Computing, 15(4):27–75, 1993.

4 Leslie G. Valiant. Universal circuits (Preliminary Report). In Proceedings of the eighth annual ACM symposium on Theory

of computing - STOC ’76, pages 196–203, Hershey, Pennsylvania, United States, 1976. ACM Press.

5 Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankaralingam, and Doug Burger. Dark silicon and the end

of multicore scaling. In 2011 38th Annual International Symposium on Computer Architecture (ISCA), pages 365–376,

2011.

6 Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier Temam. DianNao: A small-

footprint high-throughput accelerator for ubiquitous machine-learning. In Proceedings of the 19th International Conference

on Architectural Support for Programming Languages and Operating Systems (ASPLOS), page 269–284, 2014.

7 Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental Algorithms. Addison Wesley

Longman Publishing Co., Inc., USA, 1997.

8 John E. Savage. Models of Computation: Exploring the Power of Computing. Addison-Wesley Longman Publishing Co.,

Inc., USA, 1st edition, 1997.

9 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge University Press, USA, 1st

edition, 2009.

10 Masaud Y. Alhassan, Daniel Günther, Ágnes Kiss, and Thomas Schneider. Efficient and Scalable Universal Circuits. Journal

of Cryptology, 33(3):1216–1271, July 2020.

11 Shuoyao Zhao, Yu Yu, Jiang Zhang, and Hanlin Liu. Valiant’s Universal Circuits Revisited: an Overall Improvement and a

Lower Bound. Technical Report 943, 2018.

12 Hanlin Liu, Yu Yu, Shuoyao Zhao, Jiang Zhang, Wenling Liu, and Zhenkai Hu. Pushing the Limits of Valiant’s Universal

Circuits: Simpler, Tighter and More Compact. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology – CRYPTO

2021, pages 365–394, Cham, 2021. Springer International Publishing.

13 John Backus. Can Programming Be Liberated from the von Neumann Style? A Functional Style and Its Algebra of

Programs, page 1977. Association for Computing Machinery, New York, NY, USA, 2007.

14 Hsiang-Tsun Kung. Why Systolic Architectures? Computer, 15(01):37–46, 1982.

15 Ágnes Kiss and Thomas Schneider. Valiant’s Universal Circuit is Practical. In Advances in Cryptology – EUROCRYPT

2016, pages 699–728. Springer, Berlin, Heidelberg, May 2016.

16 Helger Lipmaa, Payman Mohassel, and Saeed Sadeghian. Valiant’s universal circuit: Improvements, implementation, and

applications. Cryptology ePrint Archive, Report 2016/017, 2016. https://ia.cr/2016/017.

17 Turlough Neary and Damien Woods. The complexity of small universal Turing machines: A survey. In Mária Bieliková,

Gerhard Friedrich, Georg Gottlob, Stefan Katzenbeisser, and György Turán, editors, SOFSEM 2012: Theory and Practice

of Computer Science, pages 385–405, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

18 Paul H J Kelly. Advanced Computer Architecture, Chapter 1.3: The stored program concept and the Turing Tax. https:

//www.doc.ic.ac.uk/∼phjk/AdvancedCompArchitecture/Lectures/pdfs/Ch01-part4-TuringTaxDiscussion.pdf, 2020. Lecture

notes.

19 Chris Edwards. Moore’s law: What comes next? Commun. ACM, 64(2):12–14, January 2021.

20 Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun,

and Olivier Temam. DaDianNao: A machine-learning supercomputer. In 2014 47th Annual IEEE/ACM International

Symposium on Microarchitecture, pages 609–622, 2014.

21 Yongwei Zhao, Zhe Fan, Zidong Du, Tian Zhi, Ling Li, Qi Guo, Shaoli Liu, Zhiwei Xu, Tianshi Chen, and Yunji Chen.

Machine learning computers with fractal von Neumann architecture. IEEE Transactions on Computers, 69(7):998–1014,

2020.

22 Evgenios M. Kornaropoulos and Ioannis G. Tollis. Algorithms and bounds for overloaded orthogonal drawings. Journal of

Graph Algorithms and Applications, 20(2):217–246, 2016.

23 Leslie G. Valiant. Universality considerations in vlsi circuits. IEEE Transactions on Computers, C-30(2):135–140, 1981.

24 M. Y. Lanzerotti, G. Fiorenza, and R. A. Rand. Microminiature packaging and integrated circuitry: The work of e. f. rent,

with an application to on-chip interconnection requirements. IBM Journal of Research and Development, 49(4.5):777–803,

2005.

https://ia.cr/2016/017
https://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture/Lectures/pdfs/Ch01-part4-TuringTaxDiscussion.pdf
https://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture/Lectures/pdfs/Ch01-part4-TuringTaxDiscussion.pdf

Yongwei Zhao, et al. Sci China Inf Sci 18

25 R. Beigel and J. Gill. Sorting n objects with a k-sorter. IEEE Transactions on Computers, 39(5):714–716, 1990.

26 M. Ajtai, J. Komlós, and E. Szemerédi. An O(n logn) sorting network. In Proceedings of the Fifteenth Annual ACM

Symposium on Theory of Computing, STOC ’83, page 1–9, New York, NY, USA, 1983. Association for Computing Machinery.

27 Yongwei Zhao, Zidong Du, Qi Guo, Shaoli Liu, Ling Li, Zhiwei Xu, Tianshi Chen, and Yunji Chen. Cambricon-F: Machine

learning computers with fractal von Neumann architecture. In 2019 ACM/IEEE 46th Annual International Symposium on

Computer Architecture (ISCA), pages 788–801, 2019.

	Introduction
	Preliminaries
	Notation
	Circuit Model
	Universal circuit

	The Curse of Universality
	A breif history of universal computers
	The Curse
	The unnecessity in the universality
	Architectural Universality and Quasi-Universality

	Quasi-Universal Architectures
	The Static
	The Packed
	The Slacked
	The Encapsulated (Enc)
	The Recursive-Encapsulated (REnc)
	Power of the Quasi-Universal Architectures
	The Capsule Predicate
	Bounds of Powers

	Discussion
	Conclusion

