
Cambricon-Q: A Hybrid Architecture for Efficient Training
Yongwei Zhao1,2,3, Chang Liu1,2,3, Zidong Du1,3, Qi Guo1, Xing Hu1, Yimin Zhuang1,2,3, Zhenxing Zhang1,2,3, Xinkai Song1,2,3,

Wei Li1, Xishan Zhang1,3, Ling Li4, Zhiwei Xu1,2, and Tianshi Chen3

1SKL of Computer Architecture, Institute of Computing Technology, CAS 2University of Chinese Academy of Sciences
3Cambricon Tech. Ltd 4Institute of Software, CAS

Abstract—Deep neural network (DNN) training is notoriously
time-consuming, and quantization is promising to improve the
training efficiency with reduced bandwidth/storage requirements
and computation costs. However, state-of-the-art quantized algo-
rithms with negligible training accuracy loss, which require on-
the-fly statistic-based quantization over a great amount of data
(e.g., neurons and weights) and high-precision weight update,
cannot be effectively deployed on existing DNN accelerators. To
address this problem, we propose the first customized archi-
tecture for efficient quantized training with negligible accuracy
loss, which is named as Cambricon-Q. Cambricon-Q features a
hybrid architecture consisting of an ASIC acceleration core and a
near-data-processing (NDP) engine. The acceleration core mainly
targets at improving the efficiency of statistic-based quantization
with specialized computing units for both statistical analysis (e.g.,
determining maximum) and data reformating, while the NDP
engine avoids transferring the high-precision weights from the
off-chip memory to the acceleration core. Experimental results
show that on the evaluated benchmarks, Cambricon-Q improves
the energy efficiency of DNN training by 6.41× and 1.62×,
performance by 4.20× and 1.70× compared to GPU and TPU,
respectively, with only 6 0.4% accuracy degradation compared
with full precision training.

I. INTRODUCTION

DNN training is notoriously tedious and time-consuming.
A distinct example is the most recent GPT-3 language model
from OpenAI [7], which has 175 billion parameters with
3.14E23 FLOPS for training, and thus theoretically it requires
355 years to train on a single NVIDIA V100 with 28TFLOPS
peak [41]. As the size of models continues to increase, both
industry and academy cry out for new hardware architecture
with high training efficiency.

Quantization is a promising technique for improving train-
ing efficiency [44]. By converting the full-precision floating-
point value (e.g., 32-bit floating-point, FP32) to low bit-
width data (e.g., 8-bit fixed-point, INT8) [33], it provides the
potential of highly efficient hardware through computation and
data access with reduced energy and latency, see Table I.

State-of-the-art quantized training algorithms already
achieve negligible training accuracy loss (e.g., only 0.02%)
with INT8 data on a wide range of DNN models, including
AlexNet, ResNet50, and SSD [62]. However, they cannot be
effectively deployed on any existing DNN accelerators, e.g.
GPU [12], [45] and TPU [33], even though such accelerators
have already integrated INT8 or INT16 arithmetic units
to accelerate DNN inference. For example, on the NVIDIA
V100 GPU with Tensor Core, the performance of quantized
training algorithms only achieves 78% of the traditional

training with FP32 on the evaluated benchmarks. Another
example is the FloatPIM accelerator, which integrates various
functional units including INT16, INT32, BF16, and FP32.
By using INT16 for training, FloatPIM results in significant
accuracy degradation (i.e., 5.2%) on VGGNet [30], let alone
lower bit-width data such as INT8.

The inefficiency of quantized training algorithms on existing
accelerators is caused by two reasons. The first reason is that
quantized training typically employs on-the-fly statistic-based
quantization over a great amount of data such as neurons and
weights. For example, Yang et al. count the maximum value of
a layer to quantize synaptic weights to 8-bit floating-point data
(FP8) [61]. Zhu et al. compute the cosine similarity between
the quantized weights and original weights for obtaining INT8
data [65]. Zhang et al. propose to use the vector distance and
maximum value of weights for quantizing weights and neurons
to INT8 and INT16 respectively [62]. The second reason is that
while most of the data are quantized to low bit-width data, the
weight update still requires memory access and computation
on high-precision data such as FP32. Actually, on the NVIDIA
V100 GPU, the execution time of statistic-based quantization
and high-precision weight update is 38% of the computation
time for training VGGNet.

To address these bottlenecks, in this paper, we propose
the first customized architecture called as Cambricon-Q for
efficient quantized training with negligible training accuracy
loss. Cambricon-Q features a hybrid architecture consisting

TABLE I
EFFICIENCY COMPARISON OF DIFFERENT BIT-WIDTH DATA (45NM) [27] (∗

FOR OUR RESULTS).

Bit-width Operation Energy Relative costs

32-bit Floating-point ADD 0.9pJ 30
Floating-point MUL 3.7pJ 123.33
Fixed-point ADD 0.1pJ 3.33
Fixed-point MUL 3.1pJ 103.33
DRAM access (Average) 0.65∼1.3nJ 21667∼43333

16-bit Floating-point ADD 0.4pJ 13.33
Floating-point MUL 1.1pJ 36.67
∗Fixed-point ADD 0.05pJ 1.67
∗Fixed-point MUL 1.55pJ 51.67
DRAM access (Average) 0.33∼0.65nJ 10000∼21667

8-bit Fixed-point ADD 0.03pJ 1
Fixed-point MUL 0.2pJ 6.67
DRAM access (Average) 0.16∼0.33nJ 5333∼10000

TABLE II
EXISTING HARDWARE FOR DNN TRAINING.

Hardware supports V100 [12] TPU [20] FloatPIM [30] SIGMA [51] This paper

low bit-width units 4 4 4 4 4

statistical analysis 7 7 7 7 4

Reformating 4 7 7 4 4

In-place weight update 7 7 4 7 4

of an ASIC acceleration core and a near-data-processing
(NDP) engine for accelerating statistic-based quantization
and high-precision weight update, respectively. In contrast to
conventional statistic-based quantization containing separately
processed statistical analysis (e.g., determining maximum) and
reformating over all data, which inevitably incurs extra data
accesses, the acceleration core integrates a specialized com-
puting unit for conducting statistical analysis and reformating
consecutively over each partitioned slice of the entire data. In
contrast to conventional weight update requiring transferring
high-precision weights from the off-chip memory to the on-
chip computation logics, the NDP engine is implemented by
integrating a configurable optimizer (e.g., AdaGrad [15] and
RMSProp [25]) into the DRAM, allowing in-place weight
update within the memory. Table II compares Cambricon-Q
and representative DNN accelerators in terms of hardware
supports for key operations in training.

We conduct experiments on a broad range of network
models and compare the experimental results against edge
GPU and TPU. Concretely, compared to the edge-side GPU
(i.e., Jetson TX2), the energy efficiency gains of DNN training
6.41×, performance 4.20×, respectively. Compared to the
TPU, the energy efficiency gain of DNN training is 1.62×,
performance 1.70×. Moreover, compared to full-precision
training on GPU, the accuracy loss is 60.4%.

This paper makes the following contributions.
• We conduct a thorough analysis on state-of-the-art quan-

tized training algorithms and observe that major bottle-
necks stem from on-the-fly statistic-based quantization
and full-precision weight update.

• To our best knowledge, we propose the first architecture
for efficient quantized training with negligible training
accuracy loss.

• We propose an acceleration core that performs statistic-
based quantization locally over sliced data instead of
entire data, which not only improves computing efficiency
but also significantly reduces the amount of data accesses.

• We propose a near-data-processing engine that integrates
a configurable optimizer into the DRAM for avoiding the
costly data transferring in weight update.

The rest of the paper is organized as follows: Section II dis-
cusses state-of-the-art quantized training techniques and their
inefficiency on existing training hardware. Section III intro-
duces our proposed hardware-friendly quantization technique.
Section IV describes Cambricon-Q architecture. Section V
describes our methodology. Section VI describes the physical

Il

Ol

Wl

f()

(a) Forward pass (b) Backward pass

δl δl+1

Wl+1OlIl

g()

k()

Wl

ΔWl

Wnew
l h()

layer l layer l+1
①Computing gradients on neurons
②Computing gradients on weights
③Updating weights

Fig. 1. DNN training. (a) Forward pass. (b) Backward pass. (I are the input
neurons, W are the synaptic weights, O are the output neurons, δ are the
gradients on neurons, ∆W are the gradients on weights), and Wnew are the
updated weights. Note that ∗l and ∗l+1 are the data in layer l and l + 1,
respectively.

implementation and hardware costs, evaluates the performance
of Cambricon-Q against the baselines. Section VIII discusses
the related works and Sec IX concludes this paper.

II. BACKGROUND AND MOTIVATION

A. Quantized Training

This section introduces quantization techniques applied in
the training stage.

1) DNN training: Backpropagation (BP) is the mainstream
DNN training algorithm. Roughly, BP is a two-pass algorithm,
including forward pass and backward pass. In forward pass,
DNN computes neuron outputs for input samples. The neuron
outputs of layer l are computed as Ol = f(I l,W l), where I l

and W l are the inputs and synaptic weights of layer l, f() is
the layer function, see Figure 1 (a). The backward pass consists
of three stages: computing gradients on neurons, computing
gradients on weights, and updating weights (Figure 1 (a)).
• In computing gradients on neurons stage, each layer

computes its local gradients on neurons based on the
passed-back gradients of loss function, which measures
the errors between the desired network outputs and actual
network outputs. Gradients in layer i is computed as
δl = g(Ol, δl+1,W l+1) based on the gradients in layer
l + 1, where δl+1 is the gradients on neurons in layer
i+ 1, W l+1 is the weights of layer l+ 1, and g() is the
computing function (1© in Figure 1 (a)).

• In computing gradients on weights stage, each layer com-
putes synaptic weight corrections with regard to gradients
from all connected output neurons. Gradients on weights
in layer l is computed as ∆W l = k(I l, δl), where k() is
the computing function (2© in Figure 1 (a)).

• In Updating weights stage, each synapse update its weight
value according to the delta rule or optimization methods.
It can be formulated as W l = h(W l,∆W l), where h is
the updating function (3© in Figure 1 (a)).

2) Statistic-based quantization: Quantization is a technique
that uses fewer bits to represent data so as to reduce the
hardware costs of computation, storage, and data transfer. It
can be formulated as Xq = round(X−αβ), where X is the
full-precision data, Xq is the quantized data, α and β are the
quantization parameters with regard to scale and offset.

Quantization techniques have been applied in the inference
stage for a long time. However, it is challenging to apply

2

Insufficient
Resolution
Caused Too
Much Rounding

Fixed Representable Range

Fit Well

Insufficient
Range
Caused Too
Much
Clipping

(a) (b)

Fig. 2. (a) The data distributions of gradients in different layers when training
the AlexNet [37]. Conventional quantization cannot fit for all the data in
a DNN model due to variety. (b) Maximum value of gradients in different
iterations when training the AlexNet.

them in the training stage because training data are much more
precision-sensitive. Statistic-based quantization techniques are
proposed to address this issue, which achieved 8 bit-width
DNN training with negligible accuracy loss. As listed in
Table III, they reply on two key factors, on-the-fly statistic-
based quantization and high precision weights update.

Regarding on-the-fly statistic-based quantization, the key
difference from previous quantization methods in DNN in-
ference is using statistical analysis to on-the-fly determine the
quantization parameters, including maximum value [60]–[62],
[64], [65], cosine distances [65], and vector distances [62].
The main reason is that the data distribution of gradients in
backward pass varies drastically across different layers and
training epochs, where the static quantization methods worked
in DNN inference could introduce too much quantization
errors on gradients. As the data distributions depicted in
Figure 2 when training AlexNet [37], the maximum absolute
value of gradients show a variance of two orders of magnitudes
between layers (0.00035∼0.0312), and three orders of mag-
nitudes between epochs (7.01E-14∼3.13E-2). If applying the
static quantization methods to gradients, for a representation
data range of [-0.0003,0.0003], we can easily notice that only
the conv4 layer in AlexNet can be well quantized; conv2 layer,
conv3 layer, and fc2 layer will cause too much rounding errors
due to its narrower value range; fc0 layer will cause overflow

TABLE III
LOW BIT-WIDTH TRAINING ALGORITHMS (X : ORIGINAL WEIGHTS; X′ :

QUANTIZED WEIGHTS).

Algorithm Data Format Statistic Special Cases

Wang et al. 2018 [60] FP8 max |X| Weight update (FP16)

Zhu et al. 2019 [65] INT8 max |X|, Weight update (FP32)
cos(X,X′) Learned clipping range

Yang et al. 2020 [61] INT8 max |X| Weight update (FP24)

Zhong et al. 2020 [64]Shiftable INT8 max |X| Weight update (FP32)
Quantized in groups

Zhang et al. 2020 [62]INT8/INT16 max |X|, Weight update (FP32)
X −X′ Adaptive precision

Fig. 3. DNN training with/without quantization on CPU+GPU platform.

errors due to its larger value range. Similarly, other methods
like sampling or clipping to fast estimate the statistic results
have the same drawback of introducing non-negligible quanti-
zation errors that affecting the training accuracy significantly.
For example, it is confirmed that the statistic max absolute
value should be accurate in quantized training [31], [48], [63].
In [63], an inaccurate statistic max absolute value used in
quantized training algorithms would cause 0.4∼4.6% overall
accuracy performance drop on VGG, 0.3%∼3.1% on densenet,
and 0.2%∼2.2% on Inception. Therefore, dynamic quantiza-
tion methods, which perform on-the-fly statistic counting and
quantization, is essential to retain training accuracy by taking
care of unstable and variable data distribution in the training
stage.

Regarding high precision weights update, instead of quan-
tized into low bit-width data, state-of-the-art quantization
methods use high precision data in the stage of Updating
weights. The necessity of high precision data for weights may
lie in both the smaller numbers and the larger numbers [44].
The former could cause 5% of the gradients on weights
becoming zeros as they have exponents smaller than −24,
slowing the training process. The latter could invalidate the
weight update by overflow to zeros if the weights are much
layer than the gradients on weights, causing errors that can not
be recovered. To avoid the slow convergence and severe errors
from accumulative numerical inaccuracy, the updating weights
stage is still performed with high precision data, including
FP16 [60], FP24 [61] and FP32 [62], [64], [65].

B. Motivation

Though DNN training can be quantized to as less as 8
bit-width data, the two key factors of state-of-the-art quan-
tization methods for DNN training prevent existing training
hardware, including GPUs and accelerators, from fully lever-
aging benefits of data quantization. Comparing to the training
without quantization (Figure 4 (a)), quantized training requires
more interactions with CPU, and thus could even lead to
a slowdown. For example, when perform quantized training
on an Nvidia V100 GPU, with comparable training accuracy,
it is even 1.09× ∼ 1.78× worse than the normal training
without quantization, averaging on five representative DNNs,
see Figure 3. The reason is two-fold.
Lacking of hardware support. Initially, GPU and acceler-
ators lack efficient hardware support. For GPUs, they lack

3

ACCCPU

DDR

O

f()I lWl

l

Wl+1

δl

ΔWl

g()

h()

k()

δl+1

Wl

Wnew
l

ACCCPU

DDR

Il

O
l

ACCCPU

DDR

Quantization

O

f()

I l

Iq
l

W
l

Wq
l

l

g()

Iq
l

ACCCPU

h()

δl+1
q

Quantization

Wl+1

k()

ΔWl

δl+1

Wnew
l

O
l

Wl+1
qOq

l

δlWlIl

Wq
l δl

q

DDR

(a) Backpropagation training (b) Quantized backpropagation training
Forward pass Backward pass Forward pass Backward pass

ACCCPU

DDR

O

f()

I l

Iq
l

W
l

Wq
l

l

g()

Iq
l

ACCCPU

h()

δl+1
q

Wl+1

k()ΔWl

δl+1

Wnew
l

O
l

Wl+1
qOq

l

δlWlIl

Wq
l δl

q

Q()
S() S()

S()

Iq
l Wq

l δl+1
qWl+1

qOq
l

Iq
l Wq

l δl
q

Q()

Q()

DDR
Forward pass Backward pass

(c) Naive implementation
CPU Interaction

Legend

①Computing gradients
on neurons

③Updating weights

②Comuting gradients
on weights

f()

g()

h()

k()

Forward pass:

Backward pass:

Computing neurons

Q() Quantization unit

Q() Statistic unit

Full bit-width data

Low bit-width data

Fig. 4. Processing DNNs on CPU+ACC platform. (a) Backpropagation training. (b) Quantized backpropagation training. (c) Naive implementation, where
Quantization units are placed in the ACC. (∗q : quantized data; ∗: unquantized full bit-width data.)

hardware support for on-the-fly statistic-based quantization,
including both statistic analysis and hardware quantization. For
existing quantized accelerators [3], [9], [16], [22], [23], [34],
[38], [42] which usually quantize data offline, it could be even
worse if they lack of high precision units for high precision
weights update. Therefore, as shown in Figure 4 (b), the host
CPU must be invoked to help with such processes, which is
slow and costly. For example, when training AlexNet on V100,
the total data transaction between CPU memory and GPU is
2.55× more in quantized training than normal training.
Critical data movements in Updating weights. Moreover,
as high precision weights update requires high precision data
(e.g.,W , ∆W , and Wnew), their movements between memory
and accelerator become more critical in quantized training. It
is simply because other data in quantized training have been
quantized to low bit-width, comparing the backward pass in
quantized training against that in normal training (Figure 4
(b) vs. (a)). Analytically, when training AlexNet with other
data quantized to 8-bit, high precision data movements become
1.80× more in quantized training (53.5%) than that in normal
training (29.8%).
Our solution. One may think that the naive and intuitive
solution of adding quantization support to the ACC could ad-
dress above issues, as shown in Figure 4 (c) where specialized
statistic units (S()) and quantization units (Q()) are equipped.
However, they are still far from efficiently processing state-
of-the-art quantized DNN training. The main reason is that
statistic-based quantization is not free lunch and introduces
extra data accesses during statistic counting and quantization.
Specifically, a two-pass data access is required for each data:
one for statistic analysis and one for quantization. As a result,
for each epoch, ACC has to access at least 2× more data
than training without quantization, leading to at least 2× more
memory energy costs. Even worse, when ACC has limited on-
chip storage whose size is less than a layer in DNNs, such as
in IoT devices particularly, ACC has to exchange intermediate
results back to main memory, which inevitably incurs more
data access.

In summary, a high energy-efficient hardware for quantized
DNN training should not only efficiently support on-the-fly
statistic-based quantization and high precision weights update,

but also reduce the number of extra data access and high
precision data access.

In this paper, we propose a novel hybrid architecture
of an ASIC acceleration core and a NDP Engine called
Cambricon-Q. Initially, we propose a Hardware-friendly Quan-
tization Technique (HQT), which can perform statistic anal-
ysis and quantization with one-pass data access (detailed in
Section III). Together with the Statistic Quantization Units
(SQU) and Quantization Buffer Controller (QBC), Cambricon-
Q addresses the efficient hardware support on-the-fly statistic-
based quantization issue as well as reducing the extra data
access. Cambricon-Q features the NDP Engine to address the
issue of hardware support for high precision weights update
as well as reducing the high precision data access (detailed in
Section IV).

III. HARDWARE-FRIENDLY QUANTIZATION TECHNIQUE

In this section, we introduce our hardware-friendly quantiza-
tion technique (HQT) for quantized DNN training. HQT could
avoid extra data access during quantization with its Local
Dynamic Quantization (LDQ), and could reduce quantization
errors for the long-tail-distributed data with its component of
Error-estimation-based Quantization Multiplexing (E2BQM).

A. Local Dynamic Quantization (LDQ)

Previous layer-wise statistic-based quantization techniques
need to perform global statistics before quantization, which
leads to data dependency as a “bottleneck”. Each element in
the quantized result Xq depends on the statistic θ, which itself
depends on every element in the original data X . θ is available
only after a full scan of X , thus a full scan of X is inevitable
to obtain θ. Moreover, until when θ is available, no value in
Xq can be computed, thus a second full scan of X to compute
Xq is also inevitable. The “bottleneck” phenomenon forbids
the hardware leveraging data locality and causes at least 2×
data access.

More fine-grained Local Dynamic Quantization (LDQ) can
solve the “bottleneck” phenomenon. LDQ slices the data into
blocks of fixed size. The statistic is performed within each
block, constrained the data dependencies to local scope. The
block can fit in the on-chip buffer size, hence avoid the
excessive memory accesses.

4

argmin

Xq0

Xq1

Xq2

Xq3

Q0(·)

Q1(·)

Q2(·)

Q3(·)

Θ

X

Dist

Dist

Dist

Dist

Xq

Statistic

Multi-way

Quantization Error Estimate Selection

Fig. 5. Error-estimation-based Quantization Multiplexing.

Notice that the error with LDQ is guaranteed to be less or
equal to the error with layer-wise statistic-based quantization.
The statistic θ is the max absolute value (max |X|) in the
data for every state-of-the-art algorithms. Trivially, the max
absolute value of a local data block (θi) never exceeds the
max absolute value of all the data, hence θi 6 θ always holds.
Dynamic quantization forbids the occurrence of data clipping,
so the representation with narrower range (i.e. smaller θ)
will have a less rounding error. In summary, LDQ always
has smaller or equal rounding error compared to the layer-
wise dynamic quantization. We also validate this proposition
with experiments, on 10 sets of trained models and training
algorithms, LDQ achieved +0.02% final accuracy on average,
compared to the original quantization method.

Besides, the compression ratio of LDQ is close to layer-wise
dynamic quantization (denote as DQ), if the block size K is
large enough. Suppose data is quantized into 1 byte, and the
statistic θ of each block is stored in 2 bytes. The compression
ratios of LDQ and DQ are calculated as

CLDQ =
4N

N
K (K + 2)

=
4

1 + 2/K

CDQ =
4N

N + 2
=

4

1 + 2/N

where N is the number of data, and K is the block size. If K
is greater than 200 or 4000, the compression efficiency loss is
less than 1% or 0.05%.

B. Error-estimation-based Quantization Multiplexing
(E2BQM)

Researches found that the long tail distribution of data
in DNN models exaggerated the rounding errors in fixed
point representations [32], [62], [64], [65]. Current algorithms
cover the long tail distribution with various techniques, mainly
dynamically switched quantization. Zhong et al. [64] proposed
Shiftable Fixed-Point Data Format, which encodes data two
different fixed-point value ranges with an additional bit, cover-
ing both the representable range and resolution. Jain et al. [32]
proposed a very similar data representation BiScaled-FxP for
the long tail distribution, encoding two scales (namely Scale-
Fine for most data and Scale-Wide for the long-tail). Zhang
et al. [62] use dynamically selected data format according
to estimated quantization error between INT8 and INT16, to

cover different distributions. Zhu et al. [65] proposed Direction
Sensitive Gradient Clipping to clip the long tail with a minimal
precision penalty. This technique optimizes the best clipping
range setting with backpropagation, using the cosine similarity
between the dequantized and original data as the loss function.

The divergence of techniques is unfriendly to the design of
efficient hardware. The key observation here is that all these
techniques are choosing the best quantization function Qi(·)
among several candidates Q0(·), Q1(·), . . . , QN (·) according
to the estimation of quantization error (the distance between
the original data X and the dequantized data Xq). E.g.
Shiftable Fixed-Point Data Format can be seen as choosing the
best fit value range between two candidates according to any
error estimations, and Direction Sensitive Gradient Clipping
can be seen as choosing the best clipping range among
many possible settings according to the distance defined in
the inner-product space. We unified these methods into the
Error-estimation-based Quantization Multiplexing (E2BQM)
technique, shown in Figure 5. This technique consists of
four steps: (1) performs statistic on the original data X;
(2) quantizes the data X into multiple candidates Xq i via
different quantization function Qi(·); (3) calculate the distance
between X and each dequantized data X ′i = Q−1i (Xq i) as the
estimation to quantization errors; (4) select the best candidate
as the final result Xq , according to the error estimation.

As an example, we use a 4-way E2BQM with the rectilinear
distance estimation (

∑
|xi − x′i|) to simulate the Direction

Sensitive Gradient Clipping [65]. Experimental results on
AlexNet and ResNet-18 show that the accuracy difference is
+0.1%/-0.2% respectively, which are not significantly affected.
We also validate a 4-way E2BQM to simulate the Shiftable
Fixed-Point Data Format on ResNet-181, the accuracy differ-
ence is +1.1% showing an significant improvement.

IV. CAMBRICON-Q ARCHITECTURE

A. Overview
Figure 6 shows the overall architecture of Cambricon-Q,

which consists of two major parts: an ASIC Acceleration
Core and a practical near-data-processing (NDP) Engine. The
Acceleration Core is designed to quantize data with HQT and
perform the major computations in quantized DNN training.
It consists of a PE Array for matrix/vector computing, a
scalar functional unit (SFU) for scalar operations, and three
on-chip buffers (for input neurons (NBin), output neurons
(NBout), and synapses (SB) respectively). Besides, it includes
three specially designed modules to efficiently support HQT:
a Statistic Quantization Unit (SQU) that performs the on-the-
fly statistic and LDQ, two Quantization Buffer Controllers
(QBCs) coupled with NBin and SB to manage data quantized
with different parameters (e.g., scales and offsets). The NDP
Engine is designed to perform in-place updating of high-
precision weights in memory. It consists of two specialized
modules: an SQU and a NDP optimizer (NDPO) to update
weights with various optimizers.

1Zhong et al. [64] with Shiftable Fixed-Point Data Format is not directly
applicable on AlexNet, so we only report the result on ResNet-18.

5

Q
B

C
Q

B
C

D
R

A
M

N
D
P

O
S

Q
U

S
Q

U NBout

256 KB

SB

512 KB

NBin

256 KB
PE Array

M
e

m
o

r
y

C
o

n
tr

o
ll

e
r

SFU

IB 8KB Decoder

D
D

R
 B

u
s

Full bit-width Low bit-width

NDP Engine Acceleration Core

Quantization Modules

Cambricon-Q

Fig. 6. Architecture Overview of Cambricon-Q. Cambricon-Q reduces com-
putation, storage, and transfer overheads with low bit-with data (blue blocks
and arrows) based on quantization modules (yellow blocks): SQU, QBC, and
PIMO.

Comp. CoreNDP Engine

f()

I l

Iq
l

W
l

Wq
l

g()

h()

Wl+1

k()ΔWl

δl+1

Wnew
l

O
l

WlIl δl
q

S·Q()

δl+1
qWl+1

qOq
l

Iq
l Wq

l δl
q

S·Q()

O
l
q

S·Q()

S·Q()

S·Q()

Forward pass Backward pass

Comp. CoreNDP Engine

Fig. 7. Processing quantized forward and backward pass on Cambricon-Q.
S · Q() is the fused statistic and quantization units, which is performed by
SQU. f(), g(), and k() are all performed by the PE Array and SFU. h() is
performed by the NDP Engine.

To perform the forward pass of DNN training, as shown
in Figure 7, Cambricon-Q quantizes the input neurons and
synaptic weights through the SQU inside NDP Engine directly
(i.e., S ·Q()) and then loads the quantized data to NBin and SB
in the Acceleration Core, respectively. The Acceleration Core
manages the data with different quantization parameters in
NBin and SB through the two coupled QBCs. The acceleration
core performs computation on the PE Array and SFU (i.e.,
f()). After computation, the PE Array sends its final results
to SFU for activation function and stores to NBout. The
final results are written back to memory through on-the-fly
quantization with SQU (i.e., S · Q()). It can be noticed that
only quantized data are transferred between NDP Engine and
Acceleration Core.

To perform the backward pass of DNN training, as shown
in Figure 7, Cambricon-Q follows the principle that elim-
inates full bit-width data traffic as many as possible for
the three stages of the backward pass. For the first stage,
i.e., computing gradients on neurons, Cambricon-Q loads the
output neurons of layer l, gradients of layer l + 1, weights
of layer l + 1 to NBin, NBin, and SB, respectively, while
streaming the data through SQU in NDP (i.e., S · Q()) for

Arbiter

Q
u

a
n

t.

U
n

it

Stat. Unit

SQU Buffer

4 KB

Tag

Xq

X

X

Θ

SQU Buffer

4 KB×2

Xq

Fig. 8. Statistic Quantization Unit. (X: unquantized data; Θ: quantization
parameters; Xq : quantized data.)

quantization. Cambricon-Q then computes the gradients of
layer l through the PE Array (i.e, g()) and writes only the
quantized gradients to the memory after performing on-the-
fly quantization through SQU in the Computing Core. For the
second stage, i.e.,computing gradients on weights, similarly,
Cambricon-Q loads only quantized data and computes the
results through the PE Array (i.e., k()). But slightly different
from the previous stage, Cambricon-Q writes back the full bit-
width results of weight corrections instead of quantization. For
the third stage, i.e., updating weights, Cambricon-Q performs
in-place updating weights (i.e., h()) through the NDPO in
NDPO Engine directly instead of passing to Acceleration Core,
which eliminates huge data traffic. It can be noticed that most
data transferred between NDP Engine and Acceleration Core
are quantized data as well as eliminating extra data access with
on-the-fly HQT.

In the rest of this section, we first introduce the specialized
modules designed for supporting statistic-based quantization.
Then we introduce the instruction set used in Cambricon-
Q and how the controller works. At last, we introduce the
functional units for computation.

B. Statistic-based Quantization support

Overall, Cambricon-Q addresses the challenges in Sec-
tion II-B with the help of HQT and the specialized modules,
including SQU, QBC, and NDPO. First, together with HQT,
SQU supports on-the-fly statistic counting and quantization
that eliminates non-trivial extra data access. Second, QBC, a
cache-like buffer controller, manages the data that is quantized
with different parameters in hardware. Third, NDP Engine
supports in-place synaptic weight update, avoiding costly data
transfer between memory and on-chip computing units.

1) SQU: The SQU is designed for on-the-fly statistic
counting and quantization (i.e., S · Q()), to support HQT
efficiently. As shown in Figure 8, a SQU consists of two
4 KB buffers, a Statistic Unit (Stat. Unit), a Quantization
Unit (Quant. Unit), and an Arbiter. At first, the unquantized
data (i.e., X) are stored to the SQU buffers, where the two
SQU buffers are worked in a double-buffering manner to
improve the throughput. Simultaneously, the unquantized data
(X) is sent to the Statistic Unit, which computes the statistic
results to decide the quantization parameters (i.e., Θ). Then,
based on the quantization parameters, the Quantization Unit
performs the quantization, which converts full bit-width data

6

Quant. Unit Quant. Unit Quant. Unit Quant. Unit

32 × 8 bit

Read

Tag

Read

Data

Write

Tag

Write

Data

From DMA

Line Address

From DMA

From DMA

Word Address

To PE

Fig. 9. NBin coupled with QBC.

into low bit-width data (i.e., Xq). Moreover, to support the
E2BQM technique, SQU performs a time-multiplexing 4-way
quantization with different parameters so as to find the best
quantization parameters. The Arbiter compares the quality
of quantization with different quantization parameters, and
selects the quantized data and corresponding tag as the final
quantization results.

2) QBC: In HQT, even neighboring data may be split into
two independent quantization process with different parame-
ters. To manage such data, we design the QBC, a cache-like
on-chip buffer controller, coupling with NBin and SB. Figure 9
shows the architecture of on-chip buffer with QBC, using NBin
as an example. Similarly to cache, QBC manages the NBin in
buffer lines, where data in a buffer line share the same data
format (i.e., bit-width and quantization parameters) and each
buffer line has a tag to record that data format. When data
is read out from the NBin, both data and tag are provided
to perform the computations correctly according to their data
format. In the implementation in this paper, each buffer line
in Cambricon-Q has of 32 words and each word is 8 bits.

QBC maintains the data in one buffer line having the same
data format. For most cases, data in DNNs are tensors that
are read/written from/to on-chip buffers in lines with the same
data format, where QBC only need to record the tag for each
line. But in few cases such as matrix transposition, data to
store in one buffer line have different formats. To maintain
the integrity of buffer lines, QBC performs requantization for
the data in the buffer line, when data are indexed through
a byte-addressing manner, see Figure 9. Specifically, when
writing data to a buffer line that has different tag, data and
their corresponding tags are saved in the Selected Line firstly.
Meanwhile, the Max Tag is updated to the maximum one of the
data and the buffer line. Then the Selected Line is re-quantized
based on the Max Tag and flushed back to buffer line, and the
tag of the corresponding buffer line is set to Max Tag. In such
a manner, data in buffer line are maintained with the same
quantization parameters, i.e., same tag. Please note NBout is
not coupled with QBC for it contains only full-precision data.

w

v

g

Const.
Reg.

Chip0

Chip1

Chip7

M
e

m
 A

d
d

re
s
s

m

DIMM

1

-wt-1

vt-1

mt-1

g

c1 c2 c3 c4 s1 s2 c5

mt

vt

wt

From Constant Register

From

Data

Buffer

From

DDR Bus

Back To

Data

Buffer

(a) Memory with NDPO (b) NDPO architecture

x-1/2

NDPO

Fig. 10. Architecture of NDP Engine.

3) NDPO: Table IV lists the commonly used optimizer
(i.e., h()) in Updating weights, including AdaGrad [15], RM-
SProp [25] and Adam [36], where η denotes the learning rate,
g denotes the gradient on weights, m and v are parameters
maintained by optimizers, β, β1 and β2 are decay rates. It
can be noticed that these optimizers introduce full-precision
parameters that has at least the same number of weights,
due to the element-wise functions of h(). To avoid the full
bit-width data traffic, we propose a Near-Data-Processing
Optimizer (NDPO) aside the memory to leverage the in-
place computation. As the functionality required for Updating
weights is relatively simple, the NDP Engine, which is put
aside the original memory controller, introduces only small
overhead. In our evaluation, the cost of entire NDP engine is
0.49mm2 and NDPO cost is only 0.07mm2.

Figure 10 (a) shows the architecture of memory in the NDP
Engine. The NDP Engine enhances the memory with a NDPO
for computation and several registers for buffering weights and
optimizer parameters. The NDPO is designed to support all
the optimizers listed in Table IV. As all the optimizers can be
summarized by the following formulas:

mt = c1 ×mt−1 + c2 × g vt = c3 × vt−1 + c4 × g2

t1 = mt or g t2 = v−
1
2 or 1

wt = wt−1 − c5 × t1 × t2,
(1)

we design the NDPO to perform above formulas, see Figure 10
(b). For example, for Adam optimization, Formula 1 has c1 =

β1, c2 = 1 − β1, c3 = β2, c4 = 1 − β2, c5 = η

√
1−βt

2

1−βt
1

,
s1 = 1 and s2 = 1. NDP Engine first sets the corresponding
parameter registers according to the parameters from controller
in the Acceleration Core. The memory controller sends three
successive ACTIVATE signals to the memory, where the rows
storing weight value and corresponding m and v values are
activated from the cell array. Then the memory controller in
Cambricon-Q sends WRITE signals with a gradient value g
and a destination column address through the DDR bus, where
three specific values from data buffer, namely wt−1, mt−1 and
vt−1. The updated values wt, mt and vt are computed by the
NDPO bases on Optimizer (i.e., h()), and sent back to the data

7

Tag

From NBin

PE

Acc

4-bit Data

From NBin

4-bit Data

From SB

8-bit Product

To Acc

8-bit Products

From M PEs

Tag

From SB

Dequantizer

ShiftReg

-

FP32 Result

To SFU

14-bit

38-bit

… … … … …

PE PE PE … PE

PE PE PE … PE

PE PE PE … PE

PE PE PE … PE Acc

Acc

Acc

Acc

M PEs

N
 P

E
s

AdderTree

Fig. 11. The PE Array consists of low bit-width PEs and high bit-width
accumulators (ACC).

buffer. After the current row is finished, the memory controller
sends three successive PRECHARGE signals to write back the
updated weights and optimizer parameters to the cell array.

C. Instruction Set

Cambricon-Q adopts a tensor-based instruction set, which
supports high-level operations, such as convolution (CONV),
matrix multiply (MM), vector operations (e.g. VMUL), vector-
scalar operations (e.g. VFMUL), horizontal vector operations
(e.g. HMUL), vector load/store (VLOAD/VSTORE) and stripe
load/store (SLOAD/SSTORE). Especially, to efficiently support
quantized DNN training as well as manage the NDP En-
gine, we also include several specially designed instructions,
as listed in Table V. Particularly, QSTORE/QLOAD/QMOVE
performs data storing/loading/moving with on-the-fly quanti-
zation on Acceleration Core/NDP Engine/Acceleration Core,
CROSET performs NDP configuration, and WGSTORE per-
form in-place weight update in NDP Engine.

D. Function Units

Cambricon-Q consists of two computing units, the PE Array
and the SFU. The PE Array is designed to perform high
parallel tensor operations and the SFU is designed to perform
scalar functions including non-linear operations.

TABLE IV
COMMONLY-USED OPTIMIZERS FOR DNN TRAINING.

Optimizer Parameters Computations Performed
Maintained

SGD wt = wt−1 − η × g

AdaGrad [15] m
mt = mt−1 + g2

wt = wt−1 − η × g ×m
− 1

2
t

RMSProp [25] m
mt = β ×mt−1 + (1 − β) × g2

wt = wt−1 − η × g ×m
− 1

2
t

Adam [36] m, v

mt = β1 ×mt−1 + (1 − β1) × g
vt = β2 × vt−1 + (1 − β2) × g2

m̂t = mt/(1 − βt
1)

v̂t = vt/(1 − βt
2)

wt = wt−1 − η × m̂t × v̂
− 1

2
t

TABLE V
THE PROPOSED ISA IN CAMBRICON-Q.

Type Operation Example

Control Set DDR Constants CROSET creg id, imm

Data I/O
Vector I/O VLOAD dest, src, size
Stripe I/O SLOAD dest, src, dest str, src str, size, n
On-the-fly Quantized I/O QSTORE dest, src, size
Store and 0ptimize WGSTORE dest, dest2, dest3, src, size

Compute
Matrix Multiply MM dest, lsrc, rsrc, m, n, k
2D Convolution CONV dest, weight, src, . . .
Vector Operations VMUL, VFMUL, HMul, . . .

Figure 11 shows the organization of PE Array, which con-
sists of N×M PEs, and N Accumulators. Each PE is capable
of processing a 4-bit multiplication, where a 8-bit output
is generated and sent to Accumulator. Each Accumulator
consists of an adder-tree, a shift-adder, and a dequantizer, see
Figure 11. In this paper, we choose M = N = 64 to fit in
edge devices. The adder-tree accumulates the results of its M
connected PEs, receiving 8-bit inputs from PEs and generating
14-bit summation result without loss of numerical precision.
The shift-adder is used to realize computation of wider bit-
width inputs in a time-serial manner, therefore PE Array could
perform 4-bit, 8-bit, 12-bit and 16-bit quantization with 4-bit
operators. The dequantizer is used to dequantize the final 38-
bit result into 32-bit floating-point format for later operations
such as full bit-width weight update precisely. Please note
that instead of dequantizing inputs ahead of computation,
Cambricon-Q only perform dequantization on the accumulated
results in Accumulators. Thus, it not only reduces the required
dequantization logic from M × (N + 1) shifters to N adders
and N shifters, but also reduces the hardware overhead of PEs
and Accumulator with 4-bit operators.

V. METHODOLOGY

In this section, we first introduce the experimental setup
including the benchmarks and the hardware platform configu-
rations for comparison.

A. Benchmarks

Our benchmark set (Table VI) covers a wide spectrum of
efficiency-optimized NN models including both CNNs and
recurrent networks. We test the state-of-the-art dynamic quan-
tization algorithms (Zhu [65] and Zhang [62]), and the tailored
version with optimization of HQT on them (Zhu [65]+HQT

TABLE VI
BENCHMARKS.

Model Dataset Batchsize

AlexNet [37] ImageNet [52] 32
ResNet-18 [24] ImageNet 32
GoogLeNet [57] ImageNet 32
SqueezeNet-V1 [29] ImageNet 32
Transformer-Base [59] WMT17 [5] 260
PTB-LSTM-Medium [26] PennTreeBank [43] 1000

8

and Zhang [62]+HQT). We report the average execution time
and energy consumption per minibatch of the whole training
process. Considering the resource-constrained characteristic of
our experimenting platforms, the minibatch size is set to best
fit the memory space. Data is quantized into 8-bit format
whenever possible.

B. Hardware Configurations
We compare the training performance and hardware cost

with the most commonly-used architectures: GPU and TPU.
a) Cambricon-Q: We implement Cambricon-Q in Ver-

ilog RTL. To obtain the area and power, we synthesize and
place&route the RTL code with Synopsys toolchains under
TSMC 45 nm technology. We use CACTI 7 [4] and DESTINY
[50] to model the DRAM memory and on-chip SRAM buffers.
Due to the unbearable long duration of silicon simulation,
we also implement a cycle-accurate performance simulator to
evaluate the total execution latency (cycles). The simulator also
reports the exact memory traces (Ramulator [35] is integrated)
and module activities, which is then used to calculate dynamic
energy consumptions. The Cambricon-Q has the 64×64 4-bit
PE Array working at 1 GHz, providing a peak performance of
8 Tops @ INT4 / 2 Tops @ INT8, with the memory bandwidth
of 17.06 GB/s. Please note Cambricon-Q performs the two
algorithms in a same manner but with different parameters,
and thus we have the same performance and energy numbers.

b) GPU: We choose NVIDIA Jetson TX2 as the GPU
baseline platform since the comparable hardware configura-
tion. The GPU has 256 CUDA cores (each able to perform
two FP16 FMA operations in one cycle) running at 1302 MHz
max frequency, providing a peak performance of 1.33 TFlops
@ FP16 [18], with the memory bandwidth of 59.7 GB/s. We
deploy our benchmarks on PyTorch 1.5 [49], CUDA 10.0 and
cuDNN 7.6.3. We measure the execution time with nvprof
and the energy comsumption with an Aitek AWE1611 power
analyzer. We run the training in mixed data format to enable
the best possible performance, since the GPU do not have
hardware INT8 support. To support mixed precision in training
we use Apex [46], a PyTorch extension provided by NVIDIA.

c) TPU: We re-implement TPU architecture as a sim-
ulator, based on SCALE-Sim [53]. We expand SCALE-Sim
with necessary features to support quantized DNN training,
including mixed precision, the backward process, statistic
function units and quantization units. The overall architecture
is organized as Figure 4(c) shown. For a fair comparison,
we align the hardware configuration with Cambricon-Q. More
specifically, it has the 32 × 32 8-bit PE Array running at
1 GHz, providing a peak performance of 2 Tops @ INT8,
256 KB SRAM NBin, 512 KB SRAM SB and 256 KB SRAM
NBout, with the memory bandwidth limited at 17.06 GB/s.
Additionally, for a fair comparison, we run the HQT quantized
DNN training on TPU, too, to collect the performance and
energy numbers.

VI. EXPERIMENTAL RESULTS

In this section we first evaluate the power/area over-
head of Cambricon-Q, then we compare the performance of

TABLE VII
HARDWARE CHARACTERISTICS.

- Area (mm2) (%) Power (mW) (%)

Acceleration Core 8.69 100 891.37 100
SQU 0.42 4.88 122.67 13.76
QBC 0.09 0.99 1.69 0.19
FU 2.11 24.28 483.88 54.29
NBin 1.31 15.11 6.28 0.70
SB 1.52 17.45 9.65 1.08
NBout 0.72 8.29 4.43 0.50
Decode 0.11 1.23 50.04 5.61
IB 0.36 4.14 25.28 2.84
MC 0.23 2.65 83.00 9.31
PHY 1.83 21.00 104.45 11.72

NDP Engine 0.49 100 138.94 100
SQU 0.42 86.70 122.67 88.29
NDPO 0.07 13.30 16.27 11.71

Cambricon-Q, TPU, and GPU. Finally, we analyze the insights
of Cambricon-Q design.

A. Hardware Characteristics

The detailed hardware characteristics are listed in Table VII.
The Acceleration Core in Cambricon-Q occupies 8.69 mm2

area, consuming a power of 891.37 mW, at the technology of
45 nm. It can be observed that Cambricon-Q can efficiently
process on-the-fly statistic-based quantized DNNs training
at low hardware costs, only 5.87% (0.51mm2) extra area
and 13.95% (124.36mW) extra power consumption. We also
evaluate the additional components introduced in the NDP
Engine (i.e. SQU and NDPO). They occupy 0.49 mm2 area
and consuming a power of 138.94 mW, also low hardware
costs when considering the large dram.

B. Performance

We compare the performance of Cambricon-Q against TPU
and GPU on 6 network models based on two state-of-the-art
statistic quantization algorithms.

a) Accuracy: Table VIII compares the training accuracy
results on our Cambricon-Q against two state-of-the-art quan-
tization algorithm, as well as the original FP32 unquantized
training. Zhu [65] works well on 4 CNN benchmarks, where
Cambricon-Q achieves 6 0.2% accuracy loss, −0.1% on
average compared with its original version. However, with
Zhang [62] Cambricon-Q achieves the same or even better
accuracy on 5 out of 6 benchmarks (+0.1% on average

TABLE VIII
TRAINING ACCURACY RESULTS.

Model FP32 Zhu [65] +HQT Zhang [62] +HQT

AlexNet 58.0 57.7 57.6 58.0 58.0
ResNet-18 70.1 69.6 69.5 69.6 70.0
GoogLeNet 72.8 72.0 72.0 72.8 72.8
SqueezeNet 58.5 57.3 57.1 58.1 58.1
Transformer (BLEU) 25.6 - - 24.9 25.0
LSTM (Perplexity*) 115.29 423.39 425.71 115.25 116.04

*Lower is better.

9

of CNNs and +0.4% BLEU on Transformer), only slightly
underperforms on LSTM (+0.7% perplexity). The reason is
because HQT could adjust quantization parameters in a finer-
grained manner, leading to a better quantization quality.

b) Speedup: Figure 12(a) shows the performance im-
provement of Cambricon-Q over the GPU and TPU baseline.
Overall, Cambricon-Q outperforms GPU by a factor of 4.20×,
TPU 1.70×, averaging on the two quantization algorithms and
six DNN models. The results show that Cambricon-Q can
boost performance of statistic quantization algorithms by mov-
ing the precision-sensitive data movement out of critical path.

In the further step, we breakdown the training epoch into six
parts, including forward pass (FW), backward pass (computing
gradients on neurons (NG), computing gradients on weights
(WG), updating weights (WU)), statistic analysis (S), and
quantization (Q), as shown in Figure 12(b). Cambricon-Q
achieves least speedup on AlexNet (2.09×), but most speedup
over TPU on AlexNet (2.07×). The main reason is because
AlexNet has the most number of weights, therefore costly in
Updating weights. But Cambricon-Q performs such operation
on the NDP Engine, which saves the time of data transfer from
memory. As the most difference between TPU and Cambricon-
Q is the HQT, we can observe that most of benefits are from
the on-the-fly statistic and quantization, where TPU and GPU
hardly benefit from the dynamic quantization techniques. It
can also confirm that backward pass is much more costly than
forward on both TPU and Cambricon-Q.

C. Energy

We report the energy comparison of TPU, GPU, and
Cambricon-Q across the six neural networks and the result
is shown in Figure 12(c). Overall, Cambricon-Q achieves
1.62×, and 6.41× better energy efficiency compared to TPU
and GPU, respectively. To clearly show the energy efficiency
sources, we further breakdown the energy into different com-
ponents, including functional modules in Acceleration Core
(ACC), on-chip buffer (BUF), memory standby (DDR-SB),
and memory dynamic (DDR-DY), as shown in Figure 12(d).
Energy efficiency of Cambricon-Q comes from two parts:
1) the elimination of memory traffic, including both high
precision data movements and extra data access, resulting
1.54× energy reduction on memory side; 2) the computation
units with lower bit-width, which is less significant.

VII. DISCUSSION

A. Performance scalability of Cambricon-Q

To show the efficiency of Cambricon-Q, we compare
Cambricon-Q against two high-end GPUs: desktop-level
Nvidia 1080Ti [11] and server-level Nvidia V100 [12].
With 17.64% and 1.6% peak performance of 1080Ti and
V100, Cambricon-Q achieves 33.29% and 8.55% performance,
2.16× and 2.27× better efficiency, respectively, when training
the ResNet-18.

Moreover, to achieve high throughput, we scale Cambricon-
Q to Cambricon-Q-T and Cambricon-Q-V, which have com-
parable peak performance as 1080Ti and V100, respectively.

Cambricon-Q-T and Cambricon-Q-V are organized in a sim-
ilar way as Tangram [19]. For Cambricon-Q-T, we increase
the number of PE array in Cambricon-Q to eight, thus a
total 16 Tops@INT8 perk performance (141.09% of 1080Ti’s
11.34 Tflops), where each PE array has its SB for private
weights and all the PE arrays share the NBin for broadcast
neurons. We scale the memory bandwidth for Cambricon-
Q-T 4× up to 68.24 GB/s (14.10% of 1080Ti’s 484 GB/s
bandwidth). For Cambricon-Q-V, we increase the one PE array
in Cambricon-Q to an 8×8 2D mesh, thus a 128 Tops@INT8
peak performance (102.4% of V100’s 125 Tflops), where each
column in the 2D mesh shares the same weights from SB
and each row shares the same neurons from NBin for batch
parallelism. We scale the memory bandwidth for Cambricon-
Q-V 16× up to 272.96 GB/s (30.33% of V100’s 900 GB/s
bandwidth).

Figure 13 reports the performance of Cambricon-Q,
Cambricon-Q-T, and Cambricon-Q-V, when compared against
Jetson TX2, 1080Ti, and V100, respectively. We choose the
best minibatch size settings on each hardware. Cambricon-
Q-T and Cambricon-Q-V runs faster on both ResNet-18 and
LSTM than corresponding GPUs, showing good performance
scalability.

B. Generalized to other quantization methods

Cambricon-Q has been demonstrated to well support a
bunch of state-of-the-art statistic-based quantization algo-
rithms with different data formats, statistical methods and
quantization policies, see Section III and IV. The flexibility
of Cambricon-Q is achieved by the proposed configurable
architecture: (1) the Quant Unit in SQU / QBC can support
different formats such as INT4/INT8/INT12/INT16; (2) the
Arbiter/State Unit can support various statistical methods such
as Max Absolute Value, Rectilinear Distance, and Mean Bias.

Actually, Cambricon-Q can efficiently support all statistic-
based quantization algorithms with two common and general
characteristics via HQT III: (1) the scale statistic (i.e., θ)
only depends on the original data X; (2) the error estimation
statistic depends on X and the dequantized data X’. As long
as future statistic-based quantization algorithms fit in the
two characteristics, Cambricon-Q can be efficiently applied.
Moreover, Cambricon-Q can easily support non-statistic-based
quantization algorithms by simply bypassing the Stat unit.

C. Generalized to other low-bitwidth PEs

Cambricon-Q supports other low-bitwidth data such as INT4
directly with 4-bit operators in PE. The reason is two-fold.
First, Cambricon-Q with 4-bit PE and serial computation can
be flexible for supporting more data precisions, including
INT8, INT12, INT16, and other precisions that are multiples of
4. Therefore, Cambricon-Q with 4-bit PE can directly support
models that are capable of 4-bit precision (e.g., inference)
and efficiently support models that have mixed precision.
For 4-bit models, Cambricon-Q can further increase the per-
formance/energy efficiency by 2.33x/2.35x if switched to 4-
bit. Second, Cambricon-Q with 4-bit PE is able to maintain

10

AlexN. ResN. GoogLeN. Sque.N. Transf. LSTM GeoMean
100

101

(a
) S

pe
ed

 U
p

wr
t.

GP
U

1.01

1.79

2.66 2.50 4.28
4.33

2.46

1.18
2.33

4.37 4.74
4.80 5.67

3.40

2.09
2.47

4.57 4.80
6.84 7.05

4.20

AlexN. ResN. GoogLeN. Sque.N. Transf. LSTM GeoMean
100

101

102

(c
) E

ne
rg

y
Be

ne
fit

 w
rt.

 G
PU

0.80

2.12

3.05 2.62

29.2

9.62

3.95

0.95

2.89

5.46 5.86

30.5

11.6

5.60

1.22

3.12

5.78 5.95

37.5

14.0

6.41

AlexN. ResN. GoogLeN. Sque.N. Transf. LSTM GeoMean
0

20
40
60
80

100

(b
) T

im
e

Br
ea

kd
ow

n
(%

)

FW NG WG WU S Q

AlexN. ResN. GoogLeN. Sque.N. Transf. LSTM GeoMean
0

20
40
60
80

100

(d
) E

ne
rg

y
Br

ea
kd

ow
n

(%
)

ACC BUF DDR-SB DDR-DY

GPU TPU Cam.Q (w/o NDP) Cam.Q (Full) GPU TPU Cam.Q (w/o NDP) Cam.Q (Full)

Fig. 12. Performance/energy comparison and breakdown.

1 2 4 8 16 32 64 128
Peak Performance (Tops)

1
2
4
8

16
32
64

128
256
512

Re
la

tiv
e

At
ta

in
ed

 P
er

fo
rm

an
ce GPU ResNet

GPU LSTM

TX2

TX2

1080Ti

1080Ti

Cam.Q ResNet
Cam.Q LSTM

Cam.Q

Cam.Q

Cam.Q-T

Cam.Q-T

V100
Cam.Q-V

V100

Cam.Q-V

Fig. 13. Performance when scaling Cambricon-Q to Cambricon-Q-T and
Cambricon-Q-V.

high throughput easily with regard to bit-serial computing.
Bit-serial computing is commonly introduced to address the
varying bitwidth issue, but it requires multiples of PEs to
deliver high performance and high parallelism in data to avoid
low utilization of PEs [34], [54]. As a result, Cambricon-Q
adopts 4-bit as the basic operator but leveraging time-serial
methods to support various precision.

D. Cambricon-Q without NDP

As analyzed in Section II-B, data movements in weight
updating (WU) can also be critical. Therefore NDPO is
required to achieve the most efficient training. Figure 12
also report the speed up and energy benefit of Cambricon-
Q wihout NDP Engine. On several models which involve
heavy WU processes (i.e. AlexNet, Transformer), Cambricon-
Q without NDP can only achieve negligible improvements
on both performance and energy. On the other hand, on
models whose WU take marginal proportions (i.e. GoogleNet,
SqueezeNet), Cambricon-Q without NDP achieves similar
improvements with Cambricon-Q with NDP. It can be seen
that NDP Engine is critical to support arbitrary DNN models
efficiently, and achieves non-negligible improvements over the

baseline on average (38% performance / 42% energy efficiency
improvements over TPU).

E. Comparison to approximate PIM architecture

The near-data-processing scheme adopted by Cambricon-
Q allows the acceleration core only performing low-precision
computation for high efficiency. Unlike previous PIM designs
that usually allocate the low-precision or approximate compu-
tations in PIM architecture for better efficiency, Cambricon-
Q keep the essential full-precision of weight update on the
memory side. Specifically, we propose a rank-level NDP de-
sign for the full-precision weight update, our NDP engine can
be configured to support various training optimizers including
SGD, AdaGrad, RMSProp, and Adam.

VIII. RELATED WORK

A. Quantization Algorithms

Quantization techniques are commonly used to reduce the
computation, storage, and communication overhead by using
lower bit-width to represent data. Although quantization tech-
niques can be applied in both inference and training processes,
precision sensitivity of inference and training is different. Pre-
vious works empirically demonstrated that 16-bit fixed-point
data was able to handle most of image detection inference
tasks [9], [10]. More studies were spawned to push the limit
to the border of 8 bit-width, 4 bit-width, or even lower bit-
width [28]. Training stage, however, is much more challenging
to apply quantization with retained accuracy. Training data,
especially gradients, are more sensitive to the quantization
methodology, since the lower bit-width may damage the model
accuracy. Recently, statistic-based quantization techniques [8]
have been proposed, which successfully achieved 8 bit-width
on most of training data. The key idea was to determine
the quantization parameters separately for weights, neuron
activations, and gradients according to the run-time statistic
of data distribution. Our work envisions the inefficiency of

11

TABLE IX
RECENT QUANTIZED-TRAINING-AWARE ACCELERATORS.

Cambricon-Q Agrawal 2021 [1] Oh 2020 [47] Lee 2019 [40] Wang 2018 [60] Fleischer 2018 [17]

Supported data format FxP, INT HFP8 [56], FP16 DLFloat16 [2] FGMP [40] FP8 [60] FP16
Supported training bit-width 4/8/12/16 8/16 16 8/16 8 16
Dynamic quantization support 4 7 7 Threshold-based 7 7
Extra cost in weight update - Round-off Residual† - - Stochastic Rounding‡ -
ResNet-18 accuracy @ Bit-width 70.0% @ 8/16 69.39% @ 8 - 68.19% @ 8/16 65.74% @ 8 -
Technology 45 nm 7 nm 14 nm 65 nm - 14 nm
TOPS/W 2.24 @ INT8 1.9 @ FP8 1.1 @ FP16 1.63 @ FP8 - -

† Introduces additional processing pass and 16-bit data on weights. ‡ Requires random number generation, not implemented in the proposed hardware.

deploying such smart quantization techniques on existing deep
learning architectures and proposes Cambricon-Q architecture
to reduce the overhead of run-time quantization and full-
precision computing in optimizers during statistic-based quan-
tization.

B. DNN Architectures for Quantization

Most existing DNN accelerator architectures focus on lever-
aging quantization to accelerate DNN inference [34], [39],
[48], [54], [58]. Stripes applied quantization to each layer of
CNN networks and got 2∼13 bit-width for inference [34].
BISMO [58] and BitFusion [54] proposed bit-serial multipli-
cation designs for reconfigurably executing DNN models with
variable quantized bit-width. OLAccel utilized quantization
with both 4-bit and 16-bit MACs [48]. ShapeShifter [39]
proposed loss-less memory compression techniques for width
adaption. Boroumand et al. proposed the PIM design to
quantize data near memory for data movement reduction [6].
DRQ tried dynamic region-based quantization for 4-bit or 8-bit
data during DNN inference [55]. BiScaled-DNN proposes the
new data format for quantification [32]. HBFP [14] leverage
the quantized data format to increase the hardware density
of the PE arrays with the BFP data format, but can not
ensure the training accuracy and benefit from quantization
in data transmission and storage for high energy efficiency
and performance. Existing architectures focus on leveraging
quantization to accelerate the inference. During the training
stage, the variability and precision-sensitivity of data distri-
bution makes it much more challenging to efficiently apply
quantization techniques [13], [21]. Cambricon-Q innovatively
proposes the composite design of ASIC acceleration and NDP-
based optimizers with local dynamic quantization algorithms
to efficiently accelerate DNN training with retained accuracy.

Table IX compares Cambricon-Q with recently proposed
quantized-training-aware ASIC accelerators. Regarding the
supported training bit-width, Cambricon-Q supports 4/8/12/16-
bit fixed point arithmetics, while B. Fleischer et al. [17] and
J. Oh et al. [47] only quantize to 16-bit which is much less
efficient than other 8-bit and 4-bit implementations. Regarding
the support of dynamic quantization, Cambricon-Q provided
the on-the-fly statistic and quantization support to dynamically,
efficiently and properly re-scale the data, while all the previous
accelerators except J. Lee et al. [40] lack architectural support
thus require a proper scaling factor set manually to converge.

Regarding the extra overhead in the weight update process,
Cambricon-Q proposed the NDP Engine to minimize the
overhead of the weight update process, while A. Agrawal
et al. [1] (based on HFP8 [56] format) introduces round-off
residuals which costs 13.7% more training time. Regarding the
accuracy retained, Cambricon-Q retained the highest accuracy
with 6 0.1% loss compared to the FP32 baseline (70.1%),
while J. Lee et al. [40] and N. Wang et al. [60] suffer
from non-negligible accuracy loss (> 1%). Cambricon-Q also
achieves the highest performance efficiency (2.24 TOPS/W
@ INT8 mode, 45 nm). Therefore, Cambricon-Q is the first
architecture that efficiently supports quantized training with
negligible accuracy loss.

IX. CONCLUSION

In this paper, we propose a novel hybrid architecture, called
Cambricon-Q, to efficiently process quantized DNN train-
ing. Roughly, Cambricon-Q leverages our proposed hardware-
friendly quantization technique as well as the hybrid AISC
acceleration core and NDP Engine hardware to address on-
the-fly statistic quantization DNN training. Cambricon-Q is
able to reduce the extra data access as well as high precision
data access, achieving 4.20× and 1.70× better performance,
6.41× and 1.62× better energy efficiency over the GPU and
TPU, respectively. To the best of our knowledge, Cambricon-
Q is the first architecture that can perform quantized DNN
training with only negligible accuracy loss.

ACKNOWLEDGEMENT

This work is partially supported by the NSF of China
(under Grants 61925208, 61732007, 61732002, 61906179,
U19B2019, U20A20227), the National Key Research and De-
velopment Program of China (under Grant 2020AAA0103802,
2018AAA0103300, 2017YFA0700900), Beijing Natural Sci-
ence Foundation (JQ18013), Strategic Priority Research Pro-
gram of Chinese Academy of Science (XDB32050200), Youth
Innovation Promotion Association CAS, Beijing Academy of
Artificial Intelligence (BAAI) and Beijing Nova Program of
Science and Technology (Z191100001119093) ,Youth Innova-
tion Promotion Association CAS and Xplore Prize.

This work is initiated from an internal project of Cambricon
Technologies.

12

REFERENCES

[1] A. Agrawal, S. K. Lee, J. Silberman, M. Ziegler, M. Kang, S. Venkatara-
mani, N. Cao, B. Fleischer, M. Guillorn, M. Cohen, S. Mueller, J. Oh,
M. Lutz, J. Jung, S. Koswatta, C. Zhou, V. Zalani, J. Bonanno, R. Casat-
uta, C. Y. Chen, J. Choi, H. Haynie, A. Herbert, R. Jain, M. Kar, K. H.
Kim, Y. Li, Z. Ren, S. Rider, M. Schaal, K. Schelm, M. Scheuermann,
X. Sun, H. Tran, N. Wang, W. Wang, X. Zhang, V. Shah, B. Curran,
V. Srinivasan, P. F. Lu, S. Shukla, L. Chang, and K. Gopalakrishnan, “A
7nm 4-core ai chip with 25.6tflops hybrid fp8 training, 102.4tops int4
inference and workload-aware throttling,” in 2021 IEEE International
Solid- State Circuits Conference (ISSCC), vol. 64, 2021, pp. 144–146.

[2] A. Agrawal, S. M. Mueller, B. M. Fleischer, X. Sun, N. Wang, J. Choi,
and K. Gopalakrishnan, “Dlfloat: A 16-b floating point format designed
for deep learning training and inference,” in 2019 IEEE 26th Symposium
on Computer Arithmetic (ARITH), 2019, pp. 92–95.

[3] J. Albericio, P. Judd, A. D. Lascorz, S. Sharify, and A. Moshovos, “Bit-
Pragmatic Deep Neural Network Computing,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture,
2017, pp. 1–16.

[4] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “CACTI 7: New tools for interconnect exploration in
innovative off-chip memories,” ACM Trans. Archit. Code Optim., vol. 14,
no. 2, Jun. 2017.

[5] O. Bojar, R. Chatterjee, C. Federmann, Y. Graham, B. Haddow,
S. Huang, M. Huck, P. Koehn, Q. Liu, V. Logacheva, C. Monz,
M. Negri, M. Post, R. Rubino, L. Specia, and M. Turchi, “Findings of
the 2017 conference on machine translation (wmt17),” in Proceedings
of the Second Conference on Machine Translation, Volume 2: Shared
Task Papers. Copenhagen, Denmark: Association for Computational
Linguistics, September 2017, pp. 169–214.

[6] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu,
R. Thakur, D. Kim, A. Kuusela, A. Knies, P. Ranganathan, and O. Mutlu,
“Google workloads for consumer devices: Mitigating data movement
bottlenecks,” in Proceedings of the Twenty-Third International Confer-
ence on Architectural Support for Programming Languages and Oper-
ating Systems, ser. ASPLOS ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 316–331.

[7] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” 2020.

[8] C. Chen, J. Choi, K. Gopalakrishnan, V. Srinivasan, and S. Venkatara-
mani, “Exploiting approximate computing for deep learning accelera-
tion,” in 2018 Design, Automation Test in Europe Conference Exhibition
(DATE), 2018, pp. 821–826.

[9] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“DianNao: a small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in Proceedings of the 19th international conference
on Architectural support for programming languages and operating
systems (ASPLOS), Salt Lake City, UT, USA, 2014, pp. 269–284.

[10] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture
for Energy-Efficient Dataflow for Convolutional Neural Networks,” in
2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), 2016, pp. 367–379.

[11] N. Corporation, “NVIDIA GTX 1080Ti User Guide,” https://www.
nvidia.com/content/geforce-gtx/GTX 1080 Ti User Guide.pdf, 2017.

[12] N. Corporation, “NVIDIA Tesla V100 GPU Architecture,”
https://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf, 2018.

[13] D. Das, N. Mellempudi, D. Mudigere, D. Kalamkar, S. Avancha,
K. Banerjee, S. Sridharan, K. Vaidyanathan, B. Kaul, E. Georganas,
A. Heinecke, P. Dubey, J. Corbal, N. Shustrov, R. Dubtsov, E. Fomenko,
and V. Pirogov, “Mixed precision training of convolutional neural
networks using integer operations,” in International Conference on
Learning Representations, 2018.

[14] M. Drumond, T. Lin, M. Jaggi, and B. Falsafi, “Training dnns with
hybrid block floating point,” in Proceedings of the 32nd International
Conference on Neural Information Processing Systems, ser. NIPS’18.
Red Hook, NY, USA: Curran Associates Inc., 2018, p. 451–461.

[15] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn. Res.,
vol. 12, no. null, p. 2121–2159, Jul. 2011.

[16] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,
D. Blaauw, and R. Das, “Neural Cache: Bit-Serial In-Cache Acceler-
ation of Deep Neural Networks,” in Proceedings of the 45th Annual
International Symposium on Computer Architecture, 2018.

[17] B. Fleischer, S. Shukla, M. Ziegler, J. Silberman, J. Oh, V. Srinivasan,
J. Choi, S. Mueller, A. Agrawal, T. Babinsky, N. Cao, C. Chen,
P. Chuang, T. Fox, G. Gristede, M. Guillorn, H. Haynie, M. Klaiber,
D. Lee, S. Lo, G. Maier, M. Scheuermann, S. Venkataramani,
C. Vezyrtzis, N. Wang, F. Yee, C. Zhou, P. Lu, B. Curran, L. Chang, and
K. Gopalakrishnan, “A scalable multi- teraops deep learning processor
core for ai trainina and inference,” in 2018 IEEE Symposium on VLSI
Circuits, 2018, pp. 35–36.

[18] Franklin, Dustin, “NVIDIA Jetson TX2 delivers twice the intelligence to
the edge,” https://developer.nvidia.com/blog/jetson-tx2-delivers-twice-
intelligence-edge/, 2017.

[19] M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis, “Tangram:
Optimized Coarse-Grained Dataflow for Scalable NN Accelerators,” in
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2019.

[20] Google, “Cloud TPU documentation,” https://cloud.google.com/tpu/
docs/tpus.

[21] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” CoRR, vol. abs/1502.02551,
2015.

[22] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally, “EIE: Efficient Inference Engine on Compressed Deep Neural
Network,” in 2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA), pp. 243–254.

[23] S. Han, H. Mao, and W. J. Dally, “Deep Compression - Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding,” Iclr, pp. 1–13, 2016.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[25] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine
learning: Overview of mini-batch gradient descent,” https://www.cs.
toronto.edu/∼tijmen/csc321/slides/lecture slides lec6.pdf, 2020.

[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, p. 1735–1780, Nov. 1997.

[27] M. Horowitz, “Computing’ s Energy Problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC). IEEE, 2014, pp. 10–14.

[28] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low preci-
sion weights and activations,” J. Mach. Learn. Res., vol. 18, no. 1, p.
6869–6898, Jan. 2017.

[29] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,
and K. Keutzer, “Squeezenet: AlexNet-level accuracy with 50x fewer
parameters and <1mb model size,” CoRR, vol. abs/1602.07360, 2016.

[30] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “FloatPIM : In-Memory
Acceleration of Deep Neural Network Training with High Precision,”
in Proceedings of the 46th International Symposium on Computer
Architecture, 2019.

[31] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2704–2713.

[32] S. Jain, S. Venkataramani, V. Srinivasan, J. Choi, K. Gopalakrishnan,
and L. Chang, “Biscaled-dnn: Quantizing long-tailed datastructures with
two scale factors for deep neural networks,” in Proceedings of the 56th
Annual Design Automation Conference 2019, ser. DAC ’19. New York,
NY, USA: Association for Computing Machinery, 2019.

[33] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-L. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law,
D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. Mackean, A. Maggiore,

13

M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix,
T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter,
D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma,
E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon,
“In-Datacenter Performance Analysis of a Tensor Processing Unit,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture (ISCA’17), 2017, pp. 1–17.

[34] P. Judd, J. Albericio, and A. Moshovos, “Stripes: Bit-Serial Deep Neural
Network Computing,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), vol. 6056, no. c, 2016, pp.
1–1.

[35] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
dram simulator,” IEEE Computer architecture letters, vol. 15, no. 1, pp.
45–49, 2015.

[36] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.

[37] A. Krizhevsky, G. E. Hinton, I. Sutskever, and G. E. Hinton, “ImageNet
Classification with Deep Convolutional Neural Networks,” Advances In
Neural Information Processing Systems, pp. 1–9, 2012.

[38] A. D. Lascorz, P. Judd, D. M. Stuart, M. Mahmoud, K. Siu, and
A. Moshovos, “Bit-Tactical : A Software / Hardware Approach to
Exploiting Value and Bit Sparsity in Neural Networks,” in Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, 2019, pp. 749–
763.

[39] A. D. Lascorz, S. Sharify, I. Edo, D. M. Stuart, O. M. Awad, P. Judd,
M. Mahmoud, M. Nikolic, K. Siu, Z. Poulos, and A. Moshovos,
“Shapeshifter: Enabling fine-grain data width adaptation in deep learn-
ing,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO ’52. New York, NY,
USA: Association for Computing Machinery, 2019, p. 28–41.

[40] J. Lee, J. Lee, D. Han, J. Lee, G. Park, and H. Yoo, “7.7 lnpu: A
25.3tflops/w sparse deep-neural-network learning processor with fine-
grained mixed precision of fp8-fp16,” in 2019 IEEE International Solid-
State Circuits Conference - (ISSCC), 2019, pp. 142–144.

[41] C. Li, “OpenAI’s GPT-3 Language Model: A Technical Overview,”
https://lambdalabs.com/blog/demystifying-gpt-3/, 2020.

[42] S. Li, D. Niu, K. T. Malladi, B. Brennan, and H. Zheng, “DRISA : A
DRAM-based Reconfigurable In-Situ Accelerator,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture,
vol. 14, 2017, pp. 288–301.

[43] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini, “Building a large
annotated corpus of english: The penn treebank,” Comput. Linguist.,
vol. 19, no. 2, p. 313–330, Jun. 1993.

[44] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia,
B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh et al., “Mixed
precision training,” arXiv preprint arXiv:1710.03740, 2017.

[45] Nvidia, “NVIDIA A100 TENSOR CORE GPU,” https://www.nvidia.
com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-
datasheet.pdf.

[46] NVIDIA, “Apex API Documentation,” https://nvidia.github.io/apex/,
2019.

[47] J. Oh, S. K. Lee, M. Kang, M. Ziegler, J. Silberman, A. Agrawal,
S. Venkataramani, B. Fleischer, M. Guillorn, J. Choi, W. Wang,
S. Mueller, S. Ben-Yehuda, J. Bonanno, N. Cao, R. Casatuta, C. Y.
Chen, M. Cohen, O. Erez, T. Fox, G. Gristede, H. Haynie, V. Ivanov,
S. Koswatta, S. H. Lo, M. Lutz, G. Maier, A. Mesh, Y. Nustov, S. Rider,
M. Schaal, M. Scheuermann, X. Sun, N. Wang, F. Yee, C. Zhou, V. Shah,
B. Curran, V. Srinivasan, P. F. Lu, S. Shukla, K. Gopalakrishnan, and
L. Chang, “A 3.0 tflops 0.62v scalable processor core for high compute
utilization ai training and inference,” in 2020 IEEE Symposium on VLSI
Circuits, 2020, pp. 1–2.

[48] E. Park, D. Kim, and S. Yoo, “Energy-efficient Neural Network
Accelerator Based on Outlier-aware Low-precision Computation,” in
Proceedings of the 45th Annual International Symposium on Computer
Architecture, 2018.

[49] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information

Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 8026–8037.

[50] M. Poremba, S. Mittal, D. Li, J. S. Vetter, and Y. Xie, “Destiny: A tool
for modeling emerging 3d nvm and edram caches,” in 2015 Design,
Automation Test in Europe Conference Exhibition (DATE), 2015, pp.
1543–1546.

[51] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna, “SIGMA: A Sparse and Irregular GEMM Ac-
celerator with Flexible Interconnects for DNN Training,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 58–70.

[52] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015.

[53] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Kr-
ishna, “Scale-sim: Systolic cnn accelerator simulator,” arXiv preprint
arXiv:1811.02883, 2018.

[54] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Es-
maeilzadeh, “Bit fusion: Bit-level dynamically composable architecture
for accelerating deep neural network,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), 2018, pp.
764–775.

[55] Z. Song, B. Fu, F. Wu, Z. Jiang, L. Jiang, N. Jing, and X. Liang,
“DRQ : Dynamic Region-based Quantization for Deep Neural Network
Acceleration,” in Proceedings of the 47th International Symposium on
Computer Architecture (ISCA), 2020, pp. 1010–1021.

[56] X. Sun, J. Choi, C.-Y. Chen, N. Wang, S. Venkataramani, V. V.
Srinivasan, X. Cui, W. Zhang, and K. Gopalakrishnan, “Hybrid 8-bit
floating point (hfp8) training and inference for deep neural networks,”
in Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
Eds., vol. 32. Curran Associates, Inc., 2019.

[57] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with con-
volutions,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 1–9.

[58] Y. Umuroglu, L. Rasnayake, and M. Själander, “Bismo: A scalable bit-
serial matrix multiplication overlay for reconfigurable computing,” in
2018 28th International Conference on Field Programmable Logic and
Applications (FPL), 2018, pp. 307–3077.

[59] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.

[60] N. Wang, J. Choi, D. Brand, C. Chen, and K. Gopalakrishnan, “Training
deep neural networks with 8-bit floating point numbers,” in NeurIPS,
2018.

[61] Y. Yang, S. Wu, L. Deng, T. Yan, Y. Xie, and G. Li, “Training
high-performance and large-scale deep neural networks with full 8-bit
integers,” Neural Networks, 2020.

[62] X. Zhang, S. Liu, R. Zhang, C. Liu, D. Huang, S. Zhou, J. Guo, Y. Kang,
Q. Guo, Z. Du et al., “Fixed-point back-propagation training,” in CVPR,
2020.

[63] R. Zhao, Y. Hu, J. Dotzel, C. De Sa, and Z. Zhang, “Improving neural
network quantization without retraining using outlier channel splitting,”
arXiv preprint arXiv:1901.09504, 2019.

[64] K. Zhong, T. Zhao, X. Ning, S. Zeng, K. Guo, Y. Wang, and H. Yang,
“Towards lower bit multiplication for convolutional neural network
training,” arXiv preprint arXiv:2006.02804, 2020.

[65] F. Zhu, R. Gong, F. Yu, X. Liu, Y. Wang, Z. Li, X. Yang, and J. Yan,
“Towards unified int8 training for convolutional neural network,” arXiv
preprint arXiv:1912.12607, 2019.

14

