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Abstract—Arbitrary precision computing (APC), where the
digits vary from tens to millions of bits, is fundamental for
scientific applications, such as mathematics, physics, chemistry,
and biology. APC on existing platforms (e.g., CPUs and GPUs)
is achieved by decomposing the original data into small pieces
to accommodate to the low-bitwidth (e.g., 32-/64-bit) functional
units. However, such fine-grained decomposition inevitably
introduces large amounts of intermediates, bringing in intensive
on-chip data traffic and long, complex dependency chains, so
that causing low hardware utilization.

To address this issue, we propose Cambricon-P, a bitflow
architecture supporting monolithic large and flexible bitwidth
operations for efficient APC processing, which avoids generating
large amounts of intermediates from decomposition. Cambricon-
P features a tightly-integrated computational architecture for
processing different bitflows in parallel, where full bit-serial data
paths are deployed. The bit-serial scheme still needs to eliminate
the dependency chain of APC for exploiting parallelism within
one monolithic large-bitwidth operation. For this purpose,
Cambricon-P adopts a carry parallel computing mechanism,
which enables recursively transforming the multiplication into
smaller inner-products that can be performed in parallel
between bit-indexed IPUs (Inner-Product Units). Furthermore,
to improve the computing efficiency of APC, Cambricon-
P employs a bit-indexed inner-product processing scheme,
namely BIPS, to eliminate intra-IPU bit-level redundancy.
Compared to Intel Xeon 6134 CPU, Cambricon-P achieves
100.98× performance on monolithic long multiplication, and
23.41×/30.16× speedup and energy benefit over four real-
world APC applications on average. Compared to NVidia V100
GPU, Cambricon-P also delivers the same throughput, as well
as 430×/60.5× lesser area and power, respectively, on batch-
processing multiplications.
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I. INTRODUCTION

Arbitrary precision computing (APC), indicating comput-
ing numbers with an arbitrary number of digits, is critical
for many scientific computing applications, such as super-
nova simulation, climate modeling, coulomb N-body atomic
system simulations, planetary orbit calculations, Schrodinger
Solutions [5]–[7], [9], [18], [24]. These applications require
data with hundreds, thousands, or even millions of digits,
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which can not be implemented directly on the common fixed-
bitwidth functional units (e.g., 32/64-bit integer and floating-
point) in modern CPUs and GPUs. As a result, the fixed-
bitwidth units fail to directly perform arbitrary-precision
computing in terms of both data representation range and
precision [40].

Traditionally, APC is performed through sophisticated
decomposition algorithms such as FFT [31], Karatsuba [37],
and Toom-Cook [15]. The basic idea behind these algorithms
is to recursively split large bitwidth operands into hundreds-
bit pieces (a.k.a., limbs), where arithmetic operations (e.g.,
‘schoolbook multiplication’) are applied to further decompose
these hundreds-bit limbs into 32/64-bit ones to fit the
functional units in CPUs/GPUs. More important, similar
decomposition exists in most of the APC operations, such
as division, square root, etc.

However, such decomposition prevents CPUs and GPUs
from high computing efficiency due to large amounts of
calculation intermediates. Experimental results show that the
hardware utilization of CPU is only 19.1%, and GPU is even
less than 0.001% over four representative APC workloads
(i.e., Pi [13], Frac [32], zkcm [49], and RSA [12]). The
reason behind this result is two-fold: 1) A large number of
intermediates are produced when decomposing APC operands
into small-bitwidth limbs, which inevitably causes intensive
on-chip data traffic between computing units and register
files (or buffers). 2) There are long, complex computational
dependency chains between these intermediates, which un-
dermines the parallelism. It is measured that such calculation
intermediates can be significantly reduced by decomposing
the APC operands into coarse-grained limbs (i.e., with larger-
bitwidths). For instance, in our measurement, 7.68× less
intermediates are generated when decomposing a 1,000,000-
bit Karatsuba multiplication into 1024-bit limbs than 32-bit
limbs (223.71 MB vs. 1.72 GB). Therefore, to reduce the
amount of intermediates, it is necessary to propose monolithic
large bitwidth functional units to avoid decomposing APC
operands into small-bitwidth limbs.

Bit-serial functional units seem to be a promising solution,
because of their low area and power costs compared with a
naive arithmetic logical unit (e.g., 512-bit multiplier). But



the bit-serial scheme still need to address two problems: 1)
the long, complex dependency chain, and 2) the bit-level
redundancy. On the one hand, the dependency chain is caused
by gathering results of limbs with difference significance.
For example, in a schoolbook multiplication, the final result
depends on carry-bits from products of limbs, as these
products are overlapped in digits. More important, even
carry-bits of the product from the least significant limb may
change the final result (detailed illustrated in Section III).
Such dependency chains obstruct processing different limbs
in a single APC operand in parallel. However, existing
methods fail to develop parallelism within a single APC
operation, causing their low hardware utilization for APC
applications with large bitwidth and few operands (such as
Pi [13]). On the other hand, there are repetitive or sparse bit-
level MAC operations, namely bit-level redundancy, when
APC operations (such as multiplication) are processed in
a bit-serial manner. So existing methods focusing only on
bit-level sparsity (e.g., Bit-Tactical [42]) need to be further
improved in computing efficiency.

In this paper, for high performance and energy efficiency
of APC, we propose Cambricon-P, a bitflow architecture
supporting monolithic large and flexible bitwidth operations
with optimized parallelism. On the one hand, to eliminate
the dependency chain for better parallelism, Cambricon-P
propose a monolithic-multiplication-friendly method, includ-
ing two key techniques: 1) An inner-product transformation
decomposes a monolithic large multiplication into small inner-
products to be performed simultaneously on bit-indexed IPUs
(Inner-Product Units) as well as exploiting inter-IPU data
reuse. 2) And a carry parallel computing mechanism in GUs
(Gather Units) gathers all partial-sums (outcomes of these
inner-products) in parallel. In such inter-IPU parallelism
manner, Cambricon-P could exploit the parallelism within
one monolithic APC multiplication, so that improve the
performance of APC. On the other hand, to further improve
the computing efficiency, Cambricon-P propose the bit-
indexed IPU which employs a bit-indexed inner-product
processing scheme, namely BIPS, to eliminate intra-IPU bit-
level redundancy. In details, the IPU uses the input bitflows
(e.g., the operand y⃗) to index fixed bit-patterns that are
converted from another input data (e.g., the operand x⃗) for
accumulation, which can exploit sparse and repetitive MAC
operations for further reducing unnecessary computations.

We conduct detailed experiments to evaluate Cambricon-P
on both key APC operations and four representative APC
workloads (i.e., Pi [13], Frac [32], zkcm [49], and RSA [12]).
Experimental results show that compared to Intel Xeon
6134 CPU, Cambricon-P achieves 100.98× performance on
monolithic long multiplication, and achieves 23.41×/30.16×
speedup and energy benefit on average over four real-world
APC applications. Compared to NVIDIA V100 GPU on
batch-processing multiplications, Cambricon-P still achieves
the same throughput with 430×/60.5× lesser area and power

respectively.
This paper makes the following contributions:

• Detailed analysis of APC workloads. We present a detailed
breakdown and analysis of how existing APC applications
perform on CPU and GPU platforms.

• Bitflow architecture. We propose a novel bitflow architecture
for accelerating APC.

• Inter-IPU parallelism. We propose a transformation mecha-
nism to recursively transforms the original APC computations
into parallel smaller inner-products and a carry parallel
computing mechanism to eliminate the complex data de-
pendencies.

• Intra-IPU bit-level redundancy. We propose the bit-indexed
IPU with the bit-indexed inner-product processing scheme,
namely BIPS, that exploits bit-level redundancy including
sparse and repetitive computations.

• Thorough evaluation of Cambricon-P. We conduct a
thorough evaluation of Cambricon-P on both key APC
operations and representative APC workloads. Experimental
results well demonstrate that Cambricon-P significantly
outperforms CPUs and GPUs in terms of performance, power
consumption and area.

II. BACKGROUND AND MOTIVATION

In this section, we introduce the basis of APC and their
implementation on general CPUs/GPUs. We then analyze
their inefficiency and discuss the challenges of designing an
efficient architecture for APC.

A. Primer on APC

APC plays a key role in a number of scientific computation,
where data precision varies from hundreds to millions of the
bits, such as Diophantine equation (∼ 200 bits) [9], Ising
theory(∼ 1,000 bits) [6], Log-Tan Integral Identity (∼ 50,000
bits) [7], and Computational Number Theory (∼ 7,000,000
bits) [18]. More important, since one tiny disturbance/error
can lead to a highly deviated result (i.e., classical Coulomb N-
body atomic system simulation [24]), such digit requirement
can be even infinite for some precision-sensitive computation.

Today’s APC applications are commonly implemented on
CPUs or GPUs with specialized libraries (e.g., GMP [27]
or XMP [16]) to accommodate to fixed-bitwidth hardware
functional units. For instance, GMP is designed to be the
most mature and representative CPU library for APC, and it
served as the code-base integrated in a series of GMP-based
libraries (e.g., MPFR [23], PARI/GP [53],CGAL [20], and
MPIR [26]).

We present the software stack of GMP and GMP-based
libraries in Figure 1. As shown in Figure 1, APC applications
are composed of operators with different levels, and these
operators are built hierarchically from the basic arithmetic
operations of natural numbers. From the bottom up: 1) The
library for natural numbers (GMP MPN) [27] is implemented
for long addition, subtraction, bit-shifting, logical operations,
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Figure 1. The software stack for APC implementation, where high-
level functionalities are built hierarchically from long natural numbers
multiplication and addition (i.e., low-level operators). GMP and GMP-based
libraries are committed to hierarchically building and deploying these low-
level operators. Cambricon-P replaces the CPU for accelerating the key
part (i.e., kernel operators, such as Multiply, Add, and Shift) in low-level
operators with the help of Cambricon-P runtime library (i.e., MPApca,
introduced in Section V-C).

and more importantly, for fast algorithms of multiplication,
including Karatsuba algorithm (a.k.a. Toom-Cook 2-way
algorithm), Toom-Cook k-way algorithms, and Schönhage-
Strassen algorithm (SSA). 2) Then, the fast algorithms for
multiplication are used to implement division and square root
of naturals [61]. See Table I for these low-level operators.
3) Based on the library for naturals, libraries for integers
(GMP MPZ) and real numbers (GMP MPF) are developed,
with the ability to deal with signs and exponents. 4) Further,
libraries for rationals (GMP MPQ) introduce fast factorization
algorithms, and MPFR [23] presents high-level functions
with error analysis, e.g. transcendental. These high-level
functions are decomposed to low-level operators via iterative
methods or divide-and-conquer methods, such as Newton-
Raphson [59], AGM [50], and binary-splitting [11]. 5)
Built upon these libraries, software/libraries with domain-
specific functionalities, including complex numbers, BLAS
and algebras for number theories, are developed for certain
domains, such as mathematics, security, bioinformatics,
quantum informatics and celestial physics. By the way, XMP
library on GPUs shares the analogical methodology.

To describe how common APC algorithms are constructed
hierarchically, we select Chudnovsky algorithm [13] (Algo-
rithm 1), the fastest known algorithm to calculate the digits
of π , as an example. The formula of π calculation in the
first line of Algorithm 1 is binary-split with P(), Q(), and
R(). These three functions are built with naturals addition,
subtraction, and multiplication. Specifically, π is obtained
via floating-point square root and division. The floating-
point is processed by MPF with little overhead, where the
divisions and square roots are decomposed to naturals, which
are then performed with Karatsuba’s algorithms [61] with
naturals multiplication and addition. To further increase the
acceleration, factorization can be optionally leveraged to

Algorithm 1 Computing π’s digits (Chudnovsky algorithm [13] with
binary-splitting)

π = 10005−
1
2 limq→∞

4270934400Q(0,q)
P(0,q)+13591409Q(0,q) ,

where
P(b−1,b) = (−1)b(13591409+545140134b)R(b−1,b),
Q(b−1,b) = 10939058860032000b3,
R(b−1,b) = (2b−1)(6b−5)(6b−1),

and for a < m < b,
P(a,b) = P(a,m)Q(m,b)+P(m,b)R(a,m),
Q(a,b) = Q(a,m)Q(m,b),
R(a,b) = R(a,m)R(m,b).
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Figure 2. Performance profiling of four APC applications on both CPU
and GPU. To the left: averagely, general purpose APC runs 32.2× slower
on GPU (V100+XMP) than CPU (single thread Xeon 6134+GMP). To
the right: run time breakdown on CPU showing 97.8% time consumed by
low-level operators and 87.2% time consumed by kernel operators (Multiply,
Add, Shift), averagely.

simplify the fraction before dividing.

B. The Inefficiency on Existing Hardware

Although CPUs/GPUs with GMP/XMP libraries have been
widely used in many APC applications, they fail to perform
APC efficiently. We run a set of experiments to investigate
the performance of Intel Xeon 6134 CPU with GNU GMP
6.2 [27] and NVIDIA Tesla V100 GPU with NVIDIA XMP
1.0 [16] over four typical APC applications (i.e., π’s digits
(Pi) [13], fractal rendering (Frac) [32], quantum information
(zkcm) [49], and RSA encryption (RSA) [12]) respectively.

Table I
LOW-LEVEL OPERATORS IN APC AND THEIR FAST ALGORITHMS [27],

[40] (n: the number of bits; m: the hyper-parameter in the complexity of
Division, which depends on the specific multiplication algorithm applied in

it, where 1 ≤ m < 2)

.
Functions Complexity Functions Complexity

Multiplication Addition O(n)
Schoolbook O(n2) Subtraction O(n)
Karatsuba O(n1.585) Negation O(n)
Toom-3 O(n1.465) Comparison O(n)
Toom-4 O(n1.404) Division
Toom-6 O(n1.338) Schoolbook O(n2)
SSA O(n logn log logn) Karatsuba O(nm logn)



We estimate the hardware utilization of CPU/GPU by the
ratio of measured GMP/XMP performance to the ideal/peak
performance, and get experimental results as follows. Despite
excluding the SIMD execution units (SSE/AVX) in CPU and
tensor units (Tensor Core) in GPU, the utilization of CPU is
only 19.1% of a single core, and the utilization of GPU is
even less than 0.001%. The performance profiling results are
presented in Figure 2 (left). It is shown that general purpose
APC runs 32.2× slower on GPU (V100+XMP) than CPU
(single thread Xeon 6134+GMP), which is consistent with
the hardware utilization results.

Such low hardware utilization on CPUs or GPUs is
caused by the low parallelism for APC. For CPUs, GMP
is not optimized for multi-threads [27]. Recent AVX-512
IFMA/VBMI extensions [29], landed in Intel IceLake CPUs
in 2021, provide the SIMD extension. But it still can only
basically process APC multiplication in limited-threads. For
GPUs, APC applications cannot be properly processed in
parallel across CUDA threads, which makes the parallelism
even worse than CPUs. Besides XMP [16], recent libraries,
such as CGBN [48] and CAMPARY [35], is specially
designed for batch-processing scenarios, and thus can not
work for general purpose APC, especially applications with
large-bitwidth and few operands (e.g., Pi).

C. The Performance Bottleneck of APC

We explore the bottleneck and analyze the reason be-
hind the inefficiency of APC, especially multiplication, on
CPUs/GPUs.

Performance profiling. To identify the hot-spot operators
that dominate the total runtime (or hardware utilization) of
APC, we break down those four APC applications on the
Xeon CPU. As shown in Figure 2 (right), low-level operators
take the bulk of total runtime in four APC applications on
a CPU (96.1%, 99.8%, 98.4% and 97% respectively). On
average, low-level operators consumed 97.8% of the total
runtime, while high-level operators (i.e., processing signs
and floating points) or auxiliary functions (i.e., memory
management and I/O) only consumes 2.2% of the total
runtime. Moreover, it can be observed that, in Figure 2
(right), the operators involved in Multiply, Add, and Shift
occupies 87.2% of the total runtime. Particularly, the Multiply
occupies more than half. Therefore, we primarily focus on the
performance boosting of the low-level operators, especially
on APC multiplication.

Performance bottleneck. To understand the computational
characteristic of APC multiplication, we use an idealized LRU
model to investigate the performance bottleneck. Figure 3(a)
shows a typical cache hierarchy design (AMD Zen3 [3])
with capabilities and bandwidths labeled. Figure 3(b) shows
the bandwidth utilization of APC Multiply, Random Access
(n log2 n uniformly distributed accesses to n-elements) and
single-precision Matrix Multiply respectively. Regarding the
Random Access, bandwidths at all hierarchies are reasonably
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Figure 3. (a) The hardware capability of a conventional memory hierarchy.
(b) The bandwidth utilization at each level for Random Access, Matrix
Multiplication and APC Multiply. (c) The roofline for APC Multiply, showing
the rapidly decline of operational intensity from remote to near hierarchies,
so that the capacity of register bandwidth limits its performance.

utilized, and the bottleneck is lying at remote hierarchies (i.e.,
DRAM and L2/L3 caches). Regarding the Matrix Multiply,
the utilization is concentrated at the near-end hierarchy (i.e.,
between L1 cache and register files), showing the effect of
high data locality. However, APC Multiply is completely
stuck at the nearest hierarchy (i.e., register files), while the
remote hierarchies are almost idle.

The performance bottleneck of APC Multiply is due to
the extremely high data locality, derive from the excessive
intermediates generated by the fine-grained decomposition of
APC operands. High data locality and high decomposability
factor [34] are two sides of the same coin, the later means
when decomposed into finer granularity, the amount of I/O
operations increases dramatically. At near-end hierarchies
(e.g., RF), the capacity is reduced thus the APC operation is
forced into smaller-bitwidth. Along with more data spilled
to far-end hierarchies, excessive intermediates are generated,
swapped back and forth repeatedly. An example is shown in
Figure 4. APC operands are often decomposed into thousands
if not millions of limbs recursively, causing several orders
of magnitudes more traffic pressure at the near-end (1/49000
utilization of DRAM bandwidth vs. full register file utilization
in the example), challenging the conventional architecture
design.

In addition, we analyze the bottleneck with the Roofline
model [57]. As shown in Figure 3(c), when inspecting the
memory bandwidth (blue line), the APC multiplication is
profiled as a compute-dominated application (blue mark,
hitting the black line). However, increasing the peak per-



Figure 4. Schoolbook multiplication. An n-bit multiplication is decomposed
into four n

2 -bit multiplications and three additions, but intermediates lead to
5× larger total accessed bits than directly performing n-bit multiplication
(20n vs. 4n). Moreover, the final result z depends on carries from z00, z10,
and z01.

formance (gray dashed lines) by adding more Arithmetic-
Logic-Units does not improve the attained performance. So
we inspect on-chip bandwidths (L3: green, L2: pink, L1:
violet, RF: red) to seek the reason for such disability. It
could be observed that, as the bandwidth increases, the
operational intensity decreases faster (marks moving to the
left) and eventually hits the bandwidth limit at the RF-level
(assuming the RF keeps up with the peak performance). Such
decreasing tendency of operational intensity is consistent
with the decomposability factor theory above. Therefore, to
improve the attained performance, both the peak performance
and the RF bandwidth must be lifted (the red dot-dashed line).
Since adding ports to the RF is much more expensive than
piling up ALUs, the result is likely to be memory-bounded
(red shadowed mark).

Inspiration. On the basis of the previous analysis, we
propose a hypothesis that large-bitwidth functional units with
coarse-grained decomposition could reduce the amount of
intermediates. A straightforward experiment verifies this hy-
pothesis: in our measurement, 7.68× less data are generated
when decomposing a 1,000,000-bit Karatsuba multiplica-
tion into 1024-bit limbs than 32-bit limbs (223.71 MB vs.
1.72 GB). Therefore, a monolithic large-bitwidth multiplier
is a promising solution to break the performance bottleneck
by avoiding decomposing APC multiplications into small-
bitwidth limbs.

III. CHALLENGES OF DESIGNING AN EFFICIENT
ARCHITECTURE

On the basis of such inspiration, we try to design
monolithic large-bitwidth functional units for accelerating
APC, especially multiplication.

A direct method is that implementing the large-bitwidth
ALU (Arithmetic Logical Unit), such as a 512-bit multiplier.
However, whether using Dadda or Wallace schemes, such
a large-bitwidth ALU would suffer from impractical fan-
outs and congestion with current CMOS technologies. For
example, a 512-bit integer multiplier takes an unacceptable
area of 0.16mm2 and costs 521.67× more energy, 189.36×
more area, 5.74× slower than a 32-bit integer multiplier,
under 16 nm technology. Moreover, even employing the large-
bitwidth ALU, it cannot handle the varying bitwidth, which
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Figure 5. The long, complex dependency chain in APC multiplication.
Before computing, operands (i.e.,x and y) are decomposed into n-bit limbs
respectively. It reveals that the i-th product of limbs (i.e.,zi) depends on
carry-bits of the former product(i.e.,zi−1), and propagates its carry-bits to
the latter product(i.e.,zi+1).

is required by different APC operations to achieve high
efficiency.

To avoid such expensive hardware overhead, the bit-
serial multiplier, which supports flexible bitwidth operands
and has been widely used in recent DLPs (Deep Learning
Processors) [19], [36], [42], [44], [54]–[56], seems to be a
superior solution. However, these bit-serial schemes can not
be extended to APC directly for their low hardware utilization,
caused by the following two problems: 1) parallelism—
the long, complex dependency chain, and 2) computing
efficiency—the bit-level redundancy.

Long, complex dependency chain. With the leverage of
bit-serial multipliers which support large-bitwidth monolithic
multiplications, we can reduce intermediates by decomposing
APC operands into larger limbs. But it is still challenging
to process multiple limbs in parallel as there exist the long,
complex dependency chains. For multiplication, each bit in
the output depends on 1) the equal significant bits in inputs
directly, 2) and the less significant bit in inputs indirectly
because of the carry-propagation. In the same way, the carry-
bits in the product of less significant limbs would affect
former products and the final result. As shown in Figure 5,
the result of i-th product (namely zi) is the sum of massive
multiplications of limbs (namely x j,yk), i.e. zi = ∑ j+k=i x jyk.
zi brings up to O(logn) bits of carries, where n equals to the
bitwidth of each limb. Given these possible carries, the result
of the i-th part cannot be determined until the (i−1)-th part
is finished. In the worst case, an unexpected carry propagated
from the (i−1)-th part may invert the i-th part result, and
affect the carry from the i-th to the (i+1)-th part, and even
affect up to the most significant part through the dependency
chain. Therefore, without an elaborate approach of handling
carry-propagation, a monolithic APC multiplication can only
be performed inefficiently in such a sequential manner,
causing the low hardware utilization, like today’s CPUs and



∗ This corresponds to ‘IP1’ in Figure 7 and the ‘bit-indexed inner
production’ in Figure 8.

Figure 6. (a) Bit-level redundancy in the MAC operation (Red: bit-sparsity.
Green: repeated computations). (b) Bit-serial MAC unit, supporting bit-
sparsity by skipping the zero bits.

GPUs.
Bit-level redundancy. Furthermore, higher computing

efficiency (i.e., providing higher performance under less
area and power budget) should also be acquired for bit-
serial schemes. For MAC operations, bit-level redundancy
includes bit-sparsity where zero-valued bits exit inside
each multiplication, and repeated computations where same
additions exit crossing different multiplications, as shown in
Figure 6 (a). Generally, bit-sparsity can be easily supported
in existing bit-serial designs [4], [42] by skipping the zero
bits, as shown in Figure 6 (b). However, identifying and
eliminating repeated computations is not an intuitive task,
which would be resolved in our proposal.

IV. OUR PROPOSAL

According to the former analysis, the bit-serial computing
scheme, supporting monolithic large-bitwidth operations
(esp. multiplications), is a pragmatic solution for reducing
intermediates. On the basis of such scheme, we aim at solving
two problems discussed above: 1) breaking the long, complex
dependency chain for parallelism, and 2) eliminating the bit-
level redundancy for computing efficiency.

A. Inter-IPU Parallelism

Different from previous methods, which are only applicable
to batch-processing scenarios, Inter-IPU parallelism can
exploit parallelism within one monolithic APC operation by
enabling two key techniques: inner-product transformation
and carry parallel computing mechanism.

Inner-product transformation. We first transform a
monolithic large multiplication into a bunch of small inner-
products of limbs.

x · y =
nx−1

∑
i=0

ny−1

∑
j=0

2iLxi ·2 jLy j

=
nx+ny−2

∑
t=0

2tL
min(ny−1,t)

∑
j=0

xt− jy j

=
nx+ny−2

∑
t=0

2tL−→x ∗−→y (t)

(1)

As shown in equation (1), a schoolbook multiplica-
tion (i.e., x · y) is equivalent to two limb-vectors’ (i.e.,
−→x = (x0, ...,xnx−1) and −→y =

(
y0, ...,yny−1

)
) polynomial-

convolution (i.e., recursively accumulate inner-product partial-
sums after shifting tL digits) after decomposition, where L
is the bit-width of each limb (i.e., xi,yi) and nx,ny is the
number of limbs. For example, as shown in Figure 7(a), one
APC multiplication are transformed into 5 inner-products.
Moreover, the limb-vector −→y = (y0,y1) can be reused
between 3 inner-products (i.e., IP1/IP2/IP3 in Figure 7(a)),
and the limb-vector −→x = (x0,x1,x2,x3) can be partially
reused between these inner-products (e.g., x1 could be reused
between IP1 and IP2). Processing all inner-products of limbs
in parallel is preferred to leverage such data locality.

Carry parallel computing mechanism. Although all
inner-products of limbs can be calculated in parallel, the
calculated partial-sums (e.g., the outcome of IP1) cannot be
gathered simultaneously because of the dependency chain. As
shown in Figure 7(b), each partial-sum is outputted by one
IPU in a bitflow manner. The overlap-bits between adjacent
bitflows causes the propagation of multiple carry-bits during
the gathering process, thus leading to the dependency chain
(more detailed illustration has been shown in Figure 5). So
it is inspired that, we should try to reduce the length of such
overlap-bits by gathering them timely, so as to eliminate the
dependency. In fact, when each partial-sum outputs 2L-bits
(namely aligned partial-sums), the adjacent 2L-bits aligned
partial-sums only have L overlap-bits, and the non-adjacent
ones do not have any overlap-bits. As shown in Figure 7(c),
the first step of gathering these aligned partial-sums is cutting
the accumulation into several parts, making each part only
contains two L-bits summands and the carry-bits from the
former part (i.e., Cin). In each part of such accumulation, the
key observation is that two L-bits summands have at most 1
carry-bit (i.e. Cout ) for the next addition.

partial sum(low L bits)
i−1 + partial sum(high L bits)

i +Cin

≤
(
2L −1

)
+
(
2L −1

)
+1or 0

≤ 2(L+1)−1

(2)

To illustrate this, we list the calculations of each part in the
first line of Equation (2):

• For i = 0, 0-th part contains only the least significant
L-bits of partial-sum0, so Cout must be 0 (i.e. Cin of
1-st part is equal to 0).

• For i = 1, Cin = 0, two L-bits summands can obtain
L+1-bits sum at most. Lower L-bits of the sum can be
directly outputted as the final result. While the highest
bit is regarded as the carry-bit sent to the next part (i.e.,
Cout ), due to the overlap with next part summands.

• For i = 2, Cin = 0 or 1, Equation (2) proves that the
upper-bound of sum’s bitwidth is L+1-bits. Therefore,
the resulting Cout is still at most 1-bit. Moreover, all
subsequent parts are the same as i = 2.



Figure 7. Leveraging the inter-IPU parallelism of APC multiplication:
(a) Inner-product transformation, where a monolithic large multiplication
(i.e., x · y) is decomposed into several small inner-products (e.g., IP1). (b)
Gathering aligned partial-sums (which have L overlap-bits between adjacent
ones). (c) Carry parallel computing: adding up partial-sums in advance, so
that keeping the carry-bits within one bit, enabling to calculate all parts of
accumulations in parallel by considering two possible cases of the carry-bits
(i.e., 0 or 1).

Therefore, we should timely gather bitflows of partial-sums
before their output-bits beyond 2L. To concurrently process
all aligned partial-sums, as shown in Figure 7(c), we propose
the carry parallel computing mechanism, i.e., computing all
two possible values (i.e. 1 or 0) of Cin in advance when
gathering. After each aligned partial-sum is summed up and
get its 1-bit Cout , the correct value of the next aligned partial-
sum can be selected. The following parts of partial-sums
can also be aligned and gathered by such mechanism, so
that the final result can be outputted in parallel without the
obstruction of the dependency chain.

In short, we decompose the large monolithic APC multi-
plication into batch-processed small inner-products of limbs
by the inner-product transformation, and then gather all
partial-sums (outcomes of these inner-products) in parallel
by the carry parallel computing mechanism. In such inter-
IPU parallelism manner, we could exploit the parallelism
within one monolithic APC multiplication, thus improving
the performance of APC.

B. Intra-IPU Bit-level Redundancy

To further improve the hardware efficiency, we propose
a bit-indexed inner-product processing scheme (BIPS) for
eliminating intra-IPU bit-level redundancy (i.e. sparse or
repetitive operands, as shown in Figure 6) in a single bit-
serial inner-product operation.

Bit-indexed inner-product processing scheme. Using
the two-data vectors (consistent with the data in Figure 6)
as an example, Figure 8 shows the basic processing flow
of the proposed BIPS. Roughly, the inner-product of −→x ·
−→y is performed via the form of −→x KBcolC, where −→y is
decomposed into three parts: the pattern matrix K, the index
matrix Bcol , and the digit-weight vector C. By decomposing
elements from −→y , digits in −→y can be represented with binary
matrices, as shown in Figure 8(left). K is the pattern matrix
with a size of q×2q, where q is the number of elements in

‘b00-th pos.
‘b11-th pos.
‘b11-th pos.
‘b10-th pos.

0-th pos.

1-th pos.

2-th pos.

3-th pos.

Bcol CK

Figure 8. Exploiting the intra-IPU bit-level redundancy by the bit-indexed
inner-product processing scheme (BIPS).

−→x or −→y (q = 2 in this example) and each column of K is
a possible value of a q-bit binary number, thus 2q patterns
in total. So the elements of K is only determined by q, and
it is feasible to fix K in hardware circuits after selecting q.
Bcol is the index matrix with a size of 2q × py, where py is
the bitwidth of −→y (py = 4 in this example) and each column
of Bcol indicates which pattern in K should be selected to
get original bits of −→y . So the position of ‘1’ in each one-
hot column vector (from right to left) of Bcol is equal to
the binary number consisting of corresponding q-bits in −→y
(from LSB to MSB), as shown in Figure 8(left) ‘Example’.
Therefore, in the real hardware process, Bcol does not need
to be actually generated or stored. The digit-weight vector C,
with the length of py, records the significance of original bits
in −→y . As shown in Figure 8(right), the entire computation is
achieved through three stages: patterns generation, pattern
indexing, and weighted gathering.
• Patterns generation: This stage computes the −→x K, where

the result −→z =−→x K contains all the possible combinations
of elements in −→x (i.e., patterns of −→x ).

• Pattern indexing: This stage computes the −→z Bcol , where
the arithmetic unit access the position of ‘1’ in each one-
hot column vector of Bcol by reading −→y from LSB to
MSB directly. This operation is actually selecting certain
elements in −→z according to each position of ‘1’.

• Weighted gathering: This stage accumulates indexed pat-
terns based on weights in C which are powers of 2. So
indexed patterns are shifted one by one for accumulation.
In this way, Cambricon-P avoids the repeated computations

by first processing inputs as patterns for indexing (e.g., x0 +
x1 = ’b0101+’b1011 is calculated only once, instead of twice
in original bit-serial MAC units), so that more tidy and
efficient circuits could be implemented in the functional
units. Moreover, both −→x and −→y can be serialized as bitflows,
which is critical for APC when the bitwidths of operands
comes to very large, as it avoids the requirement of large
size on-chip storage for operands.

Benefit analysis. We analyze the potential benefit of BIPS
by measuring the quantity of reduced computations. We



use bops (i.e., binary-operations) to measure the quantity
of computations. The definition of the metric bops is— for
x, y with the bitwidth of px, py, we define the bops of
addition x+y as max(px, py), and multiplication xy as px · py.
Then, we count the number of bops required to compute
an inner-product operation −→x · −→y (where −→x ,−→y have q
elements with bitwidths of px, py) through BIPS. 1) For
pattern generation, by skipping zeros and reusing partial-
sums (e.g., x0+x1 can be reused for x0+x1+x2), the bops of
−→z =−→x K is (2q −q−1) · px at most. 2) For pattern indexing,
as each column in Bcol is a one-hot vector, calculating−→̂
z =−→z Bcol just need selection operations without any bops.

3) For weighted gathering, the calculation
−→̂
z C is simply

achieved by shifting and accumulating with py (px +q) bops
at most. For px, py ≫ q in common, the total bops of BIPS is
roughly (2q −1+ py) px. While the bops of straightforward
bit-serial scheme is qpx py, and we can get the ratio of
their bops is λ = 1

q (1+
2q−1

py
). For py = 32 and arbitrary px,

used in this paper’s hardware, λmin = 0.367 when q = 4. In
other words, under such configuration, decomposing an APC
multiplication into inner-products with 4 elements would have
the least quantity of computations (i.e., bops)—36.7% of the
straightforward bit-serial scheme. Therefore, we process 4
bitflows in parallel in the later architecture design.

V. ARCHITECTURE DESIGN

In this section, we introduce the detailed architecture of
Cambricon-P, including overall integration, Cambricon-P
Processing Elements (PE), controller, datapath, and software.

A. System Integration

There are three typical integration schemes that can be
applied for specialized accelerators to work with the host
CPU: 1) LLC-integration integrates the accelerator tightly to
the CPU core where the Last Level Cache (LLC) is shared; 2)
SoC-integration integrates the accelerator by connecting to the
NoC in CPU SoC; 3) IO-integration integrates the accelerator
as I/O peripherals. In this paper, we adopt the LLC-integration
scheme for Cambricon-P. The reason is two-fold. First, LLC-
integration can efficiently reduce the interaction cost between
Cambricon-P and CPU. Cambricon-P interacts with the host
CPU intensively when performing entire APC applications.
By data sharing of LLC, integrating Cambricon-P into the
LLC can provide the least cost of such intensive interaction.
Second, the large buffer of LLC can improve the efficiency
of memory accesses on Cambricon-P. There are millions of
bits in high-precision data of APC, and the large capacity of
LLC can be leveraged to buffer the high precision data, thus
avoiding repeated memory accesses. Otherwise, Cambricon-P
is required to equip the costly large buffer. Moreover, the
granularity of Cambricon-P is sufficiently large to alleviate
the anti-memory-wall, and will not incur excessive loads on
the LLC even without the buffering of L1/L2.

(a)

(b)

(c)

Figure 9. (a) The overall architecture of Cambricon-P and Cambricon-P PE.
(b) The functionality of Converter (in implementation, repeated additions
are saved by reusing previous results, e.g., z15 can be computed using the
results of z3 = x0 +x1 and z12 = x2 +x3). (c) The architecture of IPU in PE
(zi from Converter, and y from PE M.A.).

B. Cambricon-P Architecture

1) Overall: With LLC-integration scheme, Cambricon-P is
integrated into the CPU SoC and serves as a co-processor to
the host CPU. Figure 9(a) (left) shows the overall architecture
of Cambricon-P. Cambricon-P consists of multiple Processing
Elements (NPE PEs), a Core Controller (CC), a Core Memory
Agent (CMA), and an Adder Tree (AT). The PEs are designed
to perform kernel APC operations. The CC coordinates all
the components to work together. The CMA connects PEs
to the LLC. The AT integrates the results of all PEs.

Roughly, Cambricon-P adopts recursive decomposition for
control [60], multiple bitflows for datapaths, carry parallel
computing and inner-product batch-processing for parallelism,
and bit-indexed inner product units for computation efficiency.
a) Regarding the control, when Cambricon-P receives orders
(instructions) from the CPU to perform an arbitrary-precision
inner production, the CC decomposes the inner production
into NPE small pieces (still inner productions) evenly and
maps them to NPE PEs for computing. Similarly, each PE
decomposes the small piece of inner production into smaller
inner productions. b) Regarding the datapaths, Cambricon-
P works with multiple bitflows, where each input operand
is streamed into PEs from the CMA with 1 bit per cycle,
multiple input operands are streamed in parallel (multiple
bitflows), and the outputs are streamed out to the CMA in
a bit-serial manner. c) Regarding the parallelism, each PE
implements a Gather Unit (GU) to resolve the dependency
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Figure 10. (a) The Gather Unit (8 IPUs). (b) Disabling all FAs: all PEs generate separate results. (c) Disabling FAs in the colored background: results of
every 2 IPUs are combined. (d) Disabling FAs in the yellow background: results of every 4 IPUs are combined. (e) Enabling all FAs: results of all PEs are
combined.

chain by carry parallel computing, and all PEs exploit data
reuse in the polynomial-convolution computing by the inner-
product batch-processing. d) Regarding the computation
efficiency, Cambricon-P implements multiple bit-indexed
inner product units (IPUs) to leverage the intra-IPU bit-level
redundancy.

2) Cambricon-P PE: In Cambricon-P, each PE is designed
to perform one bit-indexed inner product. Figure 9(a) (right)
shows the architecture of one PE, which contains 5 functional
components: a PE controller (PEC), a PE Memory Agent
(PEMA), a Convertor, multiple inner-product units (NIPU
IPUs), and a Gather Unit (GU).

Converter. The Converter performs the patterns generation
stage, where one input vector of inner production is converted
into all possible combinations (i.e., patterns). Figure 9(b)
shows the architecture of the Convertor (n = 4 for example),
which receives a four-data vector, i.e., −→x = (x0,x1,x2,x3),
and converts it to a sixteen-data vector, i.e., −→z . Therefore, the
sixteen data in −→z contains all the possible combinations of
the four data in −→x , 24 = 16 possibilities in total. Particularly,
the Convertor works in a bit-serial manner, where four
bitflows of the −→x stream in and sixteen bitflows stream
out. The bandwidth required is as small as 4-bits per cycle.
The generated patterns will be broadcasted to all the IPUs
in PE for later computations.

IPU. IPUs are designed as a homogeneous architecture
to perform the indexed accumulation stage and part of the
weighted gathering stage. Figure 9(c) shows the detailed
architecture of one such IPU. All IPUs share the same patterns
(−→z ), but each has individual indexes. Each IPU receives its
indexes, i.e., −→y , from the PEMA. Based on indexes, each
multiplexer in IPU selects one bitflow from −→z and allows that
bitflow to pass through. The passed results of multiplexers
are accumulated through a bit-serial accumulator. Therefore,
the IPU generates 1-bit partial-sum of the inner production
per cycle.

GU. The GU finishes the weighted gathering stage.
Figure 10 shows the architecture of the GU, where 8 IPUs
(NIPU = 8) are plotted for clarity. The GU gathers the output

(i.e. partial-sum) bitflows from IPUs and transmits integrated
results to the Adder Tree (AT) for generating the final
result. As shown in Figure 7(c), the bitflows from IPUs
are aligned and timely gathered to exploit carry parallel
computing mechanism. In such executing manner, where
both carry = 1 and carry = 0 scenarios are executed first for
later selecting the correct result, GU can generate the final
results much faster than naive and direct accumulation. For a
GU supporting NIPU IPUs, Moreover, for naive accumulation
need process overlapped bitflows (which are not timely
gathered) by a costly circuit, GU appears to be more hardware
efficient.

Moreover, to flexibly support possible decomposition of
patterns and indexes, GU is required to combine results from
certain IPUs, including every 1, 2, 4, 8, 16, and all 32 IPUs.
The naive and direct accumulation requires a costly adder
tree to achieve different combinations. In our implementation,
such combinations can be simply achieved by disabling
different FAs in GU. In Figure 10, enabling all FAs allows
combining all the IPUs, disabling FAs in color backgrounds
(red+yellow) allows combining every two adjacent IPUs,
and disabling FAs only in the yellow background allows
combining every 4 IPUs. Therefore, by disabling different
FAs, GU can achieve different combinations of IPU results.

3) Bitflow Controls: Cambricon-P employs a two-level
controller, i.e., the core controller (CC) and the PE Controller
(PEC). Controllers of both levels decompose and map the
workload (which takes the inner-product form) into the
next level of units, and the decomposed sub-workloads
also takes the inner-product form, constitutes the fractal
controlling scheme [60]. The Memory Agents (MAs), which
are in charge of the bitflow management, is also a two-level
architecture, including the PE memory agent (PEMA) and
the core memory agent (CMA), in charge of bitflows inside
PE and Cambricon-P respectively.

Data are prefetched into and read from the LLC as cache
lines, then dispatched in block (4 flows, each of 32-bit length)
onto the core-level internal data bus. The data block is saved
in PEMAs and consumed over time till the next data block



arrives. The CC determines which PE to receive the data
block from the core data bus, and the PEC determines which
IPU to receive the data block from the PE data bus.

Bitflows inside PE. Each PE receives 4 bitflows from
each input, 8 bitflows in total. One input (⃗x) serves as the
patterns and is converted into 16 bitflows, which will later be
indexed by the other input (i.e., y⃗ as indexes) in IPUs. Each
IPU fetches the 4 bitflows starting from different positions
and all the IPU work simultaneously (see Figure 9(c)). Note
that the bitflows of indexes can belong to different input
vectors, therefore with GU configured into different modes
(Figure 10), IPUs in PE can perform various numbers of
inner productions of the same x⃗ but with different y⃗.

Bitflows in Cambricon-P. The indexes are shared among
vertical PEs while the patterns are shared among the
horizontal PEs. Indexes and patterns are multi-casted via
corresponding buses respectively from CMA to PEs. As both
indexes and patterns can belong to either the same vector or
different vectors, Cambricon-P can be configured to perform a
monolithic inner-product, or different numbers of small inner-
products. High-level operators, e.g., convolution and matrix
multiplication are also directly supported with such flexibility.
It is worth noting that when performing a monolithic inner-
product, PEs are activated in sequence to align the timing of
result bits across Cambricon-P. Therefore we can save FIFOs
and registers from the AT, which integrates the computational
results of PEs periodically.

C. Working with host CPU

As a co-processor, Cambricon-P focuses on the essential
operators (esp. multiplication) with natural numbers only,
while host CPU helps to process other trivial parts, as shown
in Figure 1. In this section, we discuss how Cambricon-P
functionalities are implemented with the help of the host
CPU.

Operators and fast algorithms. For Cambricon-P, we
build a runtime library, MPApca, which realizes both the
essential operators—including addition, subtraction, multipli-
cation, and bit-shifts—and several high-level operators. Such
operators are determined by conducting clustering analysis
of widely-used APC applications. Regarding the addition,
MPApca scatters and maps the addends into different PEs to
perform parallel addition, and leverage the chained Gather
Units to deal carries afterward. Subtraction is the same as
an addition in the hardware’s perspective, while MPApca
inverses the bitflow of the subtrahend and provides an
initial carry bit to the start of the Gather Unit chain.
Regarding the multiplication, MPApca implements several
fast multiply algorithms (Toom-{2,3,4,6} and SSA). MPApca
(as well as GMP) selects at runtime which fast multiply
algorithm is used by comparing the bitwidth of operands
to compile-time tuned thresholds. Bit-shifts are translated
into timing delays or advancements with no extra overhead.
Several high-level operators are also provided in MPApca

including polynomial convolution, division, square root,
and Montgomery reduction [47], etc., composed with inner-
production, addition, subtraction, shift, and multiplication.

Negative, rational, real, and complex data. In line with
common practices, Cambricon-P supports only naturals on
hardware. The signs, fractions, exponents, and imaginaries
are managed from the host CPU with negligible overhead.
Note that the negatives are supported via sign-magnitude
instead of 2’s complementary in common APC libraries as
well as in MPApca. This is to avoid the additional costs on
computing with sign-extended leading 1s.

VI. METHODOLOGY

A. Configurations

CPU. The CPU baseline is the Intel Xeon 6134 CPU,
which is equipped 768 GB main memory with 119.21 GB/s
bandwidth. We enabled the turbo frequency to achieve the
best single-core performance and disabled SMT. Scalar
instructions on the single-core provide a peak performance
of 11.1Gops@INT64. The time and energy consumption of
CPU is measured with sprof command and Intel SoC Watch,
respectively. Regarding the time measurement, sprof only
measure CPU time cost by shared libraries (i.e. GMP/MPFR),
excluding other overheads, e.g. system calls, I/O, malloc and
value initializing. Regarding the energy costs, to measure
the energy consumed only by running APC, we measure
the energy consumption of both idle CPU and busy CPU
that runs benchmarks, where the difference between the two
readings are taken as the final energy costs. To avoid random
errors, we take the average of multiple measurements until
the error at 95% confidence level is below 1%.

We also measure the AVX512IFMA implementation open-
sourced by researchers from Intel Haifa labs [29], which
utilized instructions recently shipped with Ice Lake CPUs,
i.e., VPMADD52LUQ, VPMADD52HUQ, VPERMI2B, etc.
These instructions enabled the packed full 52-bit multiplica-
tion and convenient horizontal carry-propagation, achieving
the state-of-the-art SIMD performance over APC scenarios.

GPU. The GPU baseline is the NVIDIA V100 [17], which
has a peak performance of 125 Tops/s 16-bit floating-point
computations leveraged by the CGBN [48] library. Since
CGBN is designed to work with batched multiplication,
we measure the amortized time consumption of a single

Table II
BENCHMARKS.

Benchmark Note

Pi Computing N digits of π with Algorithm 1.
Frac Rendering Mandelbrot zooming with Perturbation the-

ory [32].
zkcm [49] Simulating quantum computers with complex matrices.
RSA [12] Cryptosystem.



Cambricon-P+MPApca

∗ Amortized over a batch of 10,000 multiplications.

Figure 11. The time costs of multiplication of N-bit natural numbers on Cambricon-P and baseline systems.

multiplication over a batch size of 10,000. We measure the
performance and power using the official nvprof tool [10].

Accelerators. We also re-implemented several accelerators
(the state-of-the-art accelerator DS/P [38] and the well-known
Bit-Tactical [42]) with the same technology and the same
theoretical throughput to compare their area and power.

Cambricon-P. To obtain the hardware characteristics,
Cambricon-P is implemented in Verilog RTL and synthesized,
placed&routed with Synopsys tools under TSMC 16 nm
technology. Memory compiler [30] is used to instantiate
on-chip buffer and DESTINY [46] to model behaviors of the
main memory. The hardware design is verified with CPU
results by using VCS and Verdi. To obtain the performance
of Cambricon-P, we implement a cycle-accurate simulator
with hardware characteristics from layout, whose behavior
is also calibrated with the hardware design.

To evaluate the time and energy consumption of ap-
plications on Cambricon-P, we override the operators in
GMP/MPFR libraries with MPApca1. The MPApca library,
which is validated with GMP, is linked to our simulator of
Cambricon-P to collect exact time and energy consumption
spent on Cambricon-P. Please note that the energy consump-
tion of LLC is also collected for Cambricon-P.

B. Benchmarks

We compare the performance of multiplication of two N-bit
long naturals as the most essential metrics. CPU+GMP and
Cambricon-P+MPApca are plotted over the 64∼ 64,000,000-
bit range, and V100+CGBN and AVX512IFMA are plotted
over their applicable ranges. Amortized costs are shown for
CGBN.

We also select 4 representative APC applications, i.e.,
Pi [13], Frac [32], zkcm [49], and RSA [12], as benchmarks
to be evaluated in this paper, see Table II. These benchmarks

1It is worth noting that although we tune MPApca at best effort, it is still
very elementary compared to GMP: it lacks many fast multiply algorithms
(Toom-{3/2, 4/3, 4/2, 5/3, 5/4, 6/3, 6H, 8, 8H}), fine-grained policy to apply
SSA, and optimization-oriented optional low-level operators (e.g. AddMul,
MulLo, DivExact). The result may be not showing the full advantage of
Cambricon-P due to software limitations.

are evaluated with varying precisions within the applicable
range, and we report the comparison between Cambricon-
P and CPU on multiple precision. All the benchmarks are
linked to GNU GMP [27] (version 6.2.1) and/or GNU MPFR
(version 4.1.0), compiled with GNU GCC [14] (version 11.1).
All benchmarks are single-threaded and affined to a fixed
CPU core, therefore we compare the Cambricon-P to one
CPU core in all the following experiments unless otherwise
specified. Error range under 95% confidence level is marked
as the shadow. V100+CGBN and AVX512IFMA are not
evaluated due to their incompatible programming interfaces.

VII. EXPERIMENTAL RESULTS

A. Hardware Characteristics

We implemented Cambricon-P in TSMC 16 nm technology,
with 256 PEs where each PE contains 32 IPUs. Cambricon-P
has an area of 1.894 mm2, which only takes ∼ 2.3% of a
core complex die (assuming AMD Zen3 [3] integration), or
∼ 56% of a CPU core. Therefore, Cambricon-P only adds
a negligible area cost to the whole CPU SoC. Cambricon-P
has a power consumption of 3.644 W under a 2 GHz clock
frequency.

B. Fast Multiplication

Figure 11 shows the time costs of the multiplication of
two N-bit natural numbers on Cambricon-P and baselines,
including Xeon 6134 CPU, V100 GPU, and AVX512IFMA.
To achieve better performance on APC multiplication, both
the GMP/GMP-based and MPApca libraries select a certain
fast algorithm routine for computing, based on the bitwidth of
operands. The thresholds for different fast multiplications are
predefined and tuned in compile-time. We first examine the
relative advantages of Cambricon-P over CPU on different
bitwidths when performing multiplication with these tuned
fast algorithms.
• With the arbitrary bitwidth supported of Cambricon-P,

the MPApca library no longer needs the schoolbook
multiplication. The ranges of fast multiply algorithms are
also delayed accordingly, saving multiplicative constant



factors in the time complexity. Cambricon-P hardware can
efficiently process the multiplication of up to N = 35904,
which fully covers the bitwidth range of GMP’s schoolbook,
Toom-{2,3,4,6H}, achieving up to 100.98× speedup. This
is the source of advantages of Cambricon-P.

• The implementation of MPApca’s Toom-Cook algorithms
is not optimal, MPApca also lacks support for Toom-8 thus
using Toom-6 instead. Therefore, we expect the speedup
will drop a little bit in the ranges of Tooms. Within the
ranges of Tooms, Cambricon-P can keep 18.06×∼ 67.78×
speedup.

• The SSA implementation in MPApca lacks a fine-
grained policy. SSA requires the bitwidth of inputs being
2k(k ∈ Z+) to keep the optimal time complexity (i.e.
O(n logn log logn)). MPApca always pads the bitwidth of
inputs to the next 2k and do calculations on the paddings,
introducing big zigzags into the time versus bitwidth curve,
while GMP use a fine-tuned lookup-table to select which
policy to apply [25], resulted in a smoother curve. Within
the range of SSA, Cambricon-P can keep 3.87×∼ 14.89×
speedup.

We also compare Cambricon-P with other baseline systems
in Figure 11 and Table III. Compared with V100+CGBN,
Cambricon-P achieves almost identical performance with
430× smaller area and 60.5× lower power. The source
of efficiency is mainly from larger granularity (4096×N
where N is arbitrary, versus V100’s 16 × 16 in major),
and also better computation efficiency (due to bit-level
redundancy exploited via bit-indexed inner-product). In
addition, CGBN only processes in batches, while Cambricon-
P can also accelerate monolithic long multiplication resulted
in better generality. This is because carry parallel computing
enabled PEs in Cambricon-P to concatenate into a monolithic
multiplier. Compared with AVX512IFMA units, the state-
of-the-art SIMD solution, Cambricon-P achieves 35.6×
performance with comparative area (3.48× larger) and power
(3.64× lower). Compared with DS/P [38], the state-of-the-art
accelerator solution, Cambricon-P costs 3.06× smaller area
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Figure 12. The roofline for APC multiplication on Cambricon-P (and the
comparison against CPU).

and 2.53× lower power under iso-throughput comparison2.
The advantage over Bit-Tactical [42] is even greater.

Moreover, we find the utilization of memory bandwidth is
far from upper-bound for all systems for experiments in Ta-
ble III. Because the operational intensity [58] of 4096×4096
multiplication is equal to 4 imul(64)/byte, which is relatively
high comparing against common applications/benchmarks
(i.e., 0.17 ∼ 1.64 flops/byte) [34], [57].

Roofline for Cambricon-P. To further understanding the
experimental results, we also draw a roofline for APC multi-
plication on Cambricon-P, shown in Figure 12. Comparing
against CPU (under an ideal/100% hardware utilization), the
larger multiplication granularity (i.e., bitwidth of limbs) in
Cambricon-P guarantees higher operational intensity, so that
making full use of more abundant arithmetic units (i.e., IPUs),
leading to the improvement of performance. In addition, when
obtaining the experimental results in this figure, we force the
Memory Agent of Cambricon-P idle in 50% run-time cycles
to guarantee the cost of maintaining CPU memory ordering
and coherence. Therefore, the bandwidth of Cambricon-P is
one grid (50%) lower than CPU LLC(L3) in the figure.

2We compare p.p.a. under the condition of iso-throughput (i.e., aligned
with Cambricon-P), since DS/P and Bit-Tactical cannot efficiently scale-up.

Table III
COMPARISON OF CAMBRICON-P AND BASELINE SYSTEMS OVER 4096×4096-BIT MULTIPLICATION.

Cambricon-P SkyLake-X (GMP [27]) V100 (CGBN [48]) AVX512IFMA [29] DS/P [38] Bit-Tactical [42]

Technology TSMC 16 nm Intel 14 nm TSMC 12 nm Intel 10 nm TSMC 16 nm TSMC 16 nm
Area (mm2) 1.89 ∼ 17.98† 815 ∼ 0.54† 5.80 7.12

(Rel.) 1 9.49† 430 0.29† 3.06 3.76

Power (W) 3.64 7.43 220.58 13.26 9.20 18.29
(Rel.) 1 2.04 60.50 3.64 2.53 5.02

Time (s) 1.60×10−8 7.59×10−2 1.56×10−8** 5.70×10−7 - -
(Rel.) 1 4.74×105 0.98** 35.60 1* 1*

Bandwidth (GB/s) 512 (LLC) 128 (L1D) 900 (HBM) 128 (L1D) - -
(Rel.) 1 0.25 1.76 0.25 1* 1*

† Estimated based on die photos. ∗ Theoretical performance/bandwidth (keep iso-throughput with Cambricon-P).
∗∗ Amortized over a batch of 100,000 multiplications.
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C. Applications

Figure 13 (top row) compares the performance results
of Cambricon-P and the baseline CPU on the benchmark
applications. Overall, Cambricon-P is 23.41× faster than
CPU on the average of four applications of all sample points.
More specifically, over the CPU, Cambricon-P can achieve
• 5.82×∼ 16.65×, 11.22× on average for Pi,
• 6.71×∼ 63.92×, 38.62× on average for Frac,
• 3.38×∼ 34.97×, 21.30× on average for zkcm, and
• 1.51×∼ 166.02×, 21.94× on average for RSA.

Particularly, Cambricon-P outperforms the baseline CPU
most on the large RSAs, where the gap grows with the
bitwidth, since RSA is composed of Montgomery reductions
(implemented by pairs of multiply and add operations) and
squares, the time proportion of multiplicative operations
grows rapidly with bitwidth, which best fit Cambricon-
P’s architecture. The least speedup is from Pi since the
binary-splitting method introduced many small-bitwidth
multiplications that are hard to accelerate.

The energy efficiency of Cambricon-P versus the baseline
CPU is in line with the performance results, Cambricon-P
achieves 30.16× energy benefits overall.

VIII. RELATED WORKS

Bit-serial computing. Bit-serial computing is resurgent in
the field of computer architecture for the recent development
of deep learning processors. The major advantage taken
from bit-serial computing is the flexibility for various
bitwidth [19], [36], [42], [44], [54]–[56], instead of the chip
area efficiency for early bit-serial architecture [28], [52].
MLWeaving [56], Stripes [36], and Bit-Tactical [42] leverage
the bit-serial computing for deep neural networks with low-
precision/quantized data (below 16 bits). Shapeshifter [43]

further extends the bit-serial computing for a finer-grain
than layer. Li [44] exploits computational redundancy in
iterative computations (Jacobi/Newton’s solvers) rather than
general proposes. However, these bit-serial schemes can not
be extended to APC directly for their low hardware utilization,
caused by the unresolved dependency chain of intermediates
and the unidentified repetitive MAC operations.

Hardware platforms for APC. As CPUs only contain
limited computing power, there is a clear trend towards large
parallel hardware platforms, including GPUs and customized
architecture— recent works try to leverage the GPU by manu-
ally optimization with CUDA implementations for a specified
subset of APC applications. For example, a multiple-precision
arithmetic library is built especially for chaotic dynamical,
which targets mainly applications deployed on NVIDIA
GPU [35]. Isupov et al. [33] proposes a residue number
system (RNS) based library for heterogeneous CPU-GPU
architectures to enable effective parallelism of arithmetic
operations. However, these works do not achieve comparable
performance as CPUs on general APC applications (especially
those applications with fewer operands that could hardly be
batch-processed). Efforts on customized architecture are also
made. Bocco et al. [8] proposes an FPGA prototype, namely
SMURF, that supports long floating-point data computing
having up to 512-bit mantissa. It is mainly concerned with
the efficient control of numerical methods (such as newton-
Raphson method) on the coprocessor (rather than how to
design a high efficient APC units), which is orthogonal to
our work. Feinberg et al. [21] uses a memristive crossbar
together with a GPU for matrix multiplication but with
only 32-bit fixed-point data. Koenig et al. [41] proposes
an accelerator to compute dot products with up to 4288
bits. Li et al. [44] build an iterative solver on FPGA,



namely Architect, to accelerate iterative applications (e.g.,
Jacobi/Newton solvers for equations) with multiple precisions.
The insight of Architect is to avoid recalculating digits across
different iterations (not for a single operands).

These efforts either fail on processing arbitrary precision
or are unable to be used for arbitrary applications, while
Cambricon-P can process general APC applications with high
efficiency.

IX. CONCLUSIONS

While APC is important to many fields, massive inter-
mediates in decomposition brings in intensive on-chip data
traffic and long, complex dependency chains, so that causing
low hardware utilization. Reducing intermediates and their
data traffic requires large-bitwidth monolithic multipliers
but the dependency chain exacerbates the design difficulties.
In this paper, we propose Cambricon-P, an accelerated bit-
serial architecture to efficiently process APC. Cambricon-
P exploits inter-IPU parallelism for breaking dependency
chains and intra-IPU bit-level redundancy for further com-
puting efficiency. Compared to Intel Xeon 6134 CPU,
Cambricon-P achieves 100.98× performance on monolithic
long multiplication, and achieves 23.41×/30.16× speedup
and energy benefit on average over four real-world APC
applications. Compared to NVidia V100 GPU on batch-
processing multiplications, Cambricon-P also achieves the
same throughput with 430×/60.5× lesser area and power.

Despite extending APC to ripe fields like Homomorphic
Encryption (HE) [22], [39], [51], Celestial Orbit Calcula-
tion [1], [2], and Protein Structure Prediction [45], from the
perspective of architecture, our future works will focus on
end-to-end acceleration of APC applications, including FFT,
IFFT integration.
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