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Abstract
The rapid advancement of Large Language Models (LLMs)
has established language as a core general-purpose cognitive
substrate, driving the demand for specialized Language Pro-
cessing Units (LPUs) tailored for LLM inference. To overcome
the growing energy consumption of LLM inference systems,
this paper proposes a Hardwired-Neurons Language Process-
ing Unit (HNLPU), which physically hardwires LLM weight
parameters into the computational fabric, achieving several
orders of magnitude computational efficiency improvement
by extreme specialization. However, a significant challenge
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still lies in the scale of modern LLMs. A straightforward
hardwiring of gpt-oss 120 B would require fabricating pho-
tomask sets valued at over 6 billion dollars, rendering this
straightforward solution economically impractical.
Addressing this challenge, we propose the novel Metal-

Embedding methodology. Instead of embedding weights in
a 2D grid of silicon device cells, Metal-Embedding embeds
weight parameters into the 3D topology of metal wires. This
brings two benefits: (1) a 15× increase in density, and (2) 60
out of 70 photomask layers are homogeneous across chips,
including all EUV photomasks. In total, Metal-Embedding
reduced the photomask cost by 112×, bringing the Non-
Recurring Engineering (NRE) cost of HNLPU into an econom-
ically viable range. Experimental results show that HNLPU
achieved 249,960 tokens/s (5,555×/85× that of GPU/WSE),
36 tokens/J (1,047×/283× that of GPU/WSE), 13,232mm2 to-
tal die area, $ 59.46M–123.5M estimated NRE at 5 nm tech-
nology. Analysis shows that HNLPU achieved 41.7–80.4×
improvement in cost-effectiveness and 357× reduction in
carbon footprint compared to OpenAI-scale H100 clusters,
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under an annual weight updating assumption.

CCS Concepts: • Computer systems organization →
Neural networks; • Hardware → Hardware accelera-
tors.
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1 Introduction
Current trends in artificial intelligence development indi-
cate that language capabilities serve as the core foundation
for constructing advanced cognitive and learning systems.
This is exemplified by the rapid advancement of Large Lan-
guage Models (LLMs), which have achieved technological
unification in Natural Language Processing (NLP) [5, 83, 87].
By demonstrating human-level performance across diverse
downstream tasks, LLMs are expanding their application
scope while exhibiting a growing trend toward enhanced
generality—enabling a single model to handle multiple tasks
that previously required distinct systems.
Driven by widespread adoption despite the heavy hard-

ware overhead of LLMs, there has been a surge in demand for
dedicated processors specifically designed for LLM inference,
collectively known as Language Processing Units (LPUs). For
instance, Groq LPU [1, 2] and CerebrasWSE [48, 51] pre-load
model weights into on-chip SRAM, while Etched Sohu [89]
hardens the transformer dataflow into its compute fabric.
These LPUs leverage the advanced specialization targeting
LLMs, achieving 4 ∼ 20× energy efficiency compared to
traditional CPUs, GPUs, and NPUs.
Although LPUs have brought a certain improvement in

hardware efficiency, AI infrastructure still suffers from tremen-
dous energy costs. For example, AI datacenters are estimated
to occupy 12% of the total electricity capacity in the US
by 2028, which is clearly unsustainable [62]. This is due
to the fact that current LPUs and GPUs still see models as
dynamically changing data, despite the fact that leading en-
terprises typically deploy only a single or a few proprietary
LLMs. The hundreds of billions of weight parameters are
repeatedly fetched during each autoregressive decoding step,
consuming the majority of system power.

Life, Science, and Art
Ask Me Anything: _

Life, Science, and Art
Ask Me Anything: _

0.03 Tokens/J 36 Tokens/J

Figure 1. Hardwired LPU as a general-purpose pro-
cessor. To the left: AI Infrastructures are originated in the
rapidly evolving deep learning which appreciates universal-
ity over extreme efficiency. To the right: As LLM develops,
the responsibilities of universality are shifting from HW/SW
to LLMs. An extremely specialized Hardwired LPU can also
be helpful in general tasks.

To fundamentally solve the limitation, we argue for push-
ing the specialization of LPU to the extreme. By physically
hardwiring weight parameters into the LPU fabric, Hard-
wired LPU can achieve perfect architecture-model matching,
zero parameter fetching overhead, and extreme computa-
tional efficiency from constants-arithmetic circuits. As one
dominant pre-trained LLM can serve as a general-purpose
cognitive substrate for a wide variety of tasks, the extreme
specialization once considered too inflexible is transform-
ing into a reasonable choice with huge potential benefits
(Figure 1).

However, previous attempts on hardwiringwould be stopped
by the extraordinarily large scale of modern LLM. The most
optimistic estimation on hardwiring gpt-oss 120 B [65]would
require a 176,000mm2 constant-multiply-and-accumulate
units (CMAC) array at 5 nm technology. Unlike previous
wafer-scale practices that step a repeated lithographic pat-
tern on the wafer, here the patterns are heterogeneous every-
where, because embedded weight parameters are different
everywhere. The photomask sets are valued at over 6 bil-
lion dollars, rendering the straightforward implementation
of Hardwired LPU economically prohibitive.

An economically viable Hardwired LPU requires a break-
through in weight-embedding methodology. In this paper,
we propose the Metal-Embedding (ME) methodology, achiev-
ing multiple orders-of-magnitude reduction on photomask
counts required to implementHardwired LPU. Roughly speak-
ing, instead of embedding weights in the 2D grid of cells (ei-
ther MAC/CMAC/SRAM/ReRAM cells), ME embeds weights
in the 3D topology of metal wires (Figure 6). The benefits
of ME are two-fold. First, due to the inherently richer ex-
pression of 3D structure, ME reduced the area by an order-
of-magnitude (-93.4%) compared with the CMAC grid. Sec-
ond, these metal wires can be placed at higher metal layers

https://doi.org/10.1145/3779212.3790169
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(M8+), to be cost-efficiently fabricated with trailing-edge
optical lithography (193i). As a result, ME keeps photomask
homogeneous (shared) across all chips for all layers in Front-
End-of-Line (FEOL) and critical layers in Back-End-of-Line
(BEOL), including all Extreme Ultraviolet (EUV) photomask
in the process. This reduced the total cost on photomask by
another order of magnitude: -86.5% for initial tapeout, -92.3%
for parameter-only update re-spin.
We evaluate the first Hardwired LPU design HNLPU at

5 nm technology based on post-layout characteristics, and
compare with baselines (NVIDIA H100 GPU, Cerebras WSE-
3) at the same technology node. Experimental results demon-
strate that HNLPU achieved 249,960 tokens/s throughput
(5,555× of H100, 85× of WSE-3), 36 tokens/J energy efficiency
(1,047× of H100, 283× of WSE-3), at 13,232mm2 total die area
divided into 16 chips. Estimated Non-Recurring Engineering
cost (NRE) of HNLPU is $ 59.46M–123.5M for the initial
tapeout, $ 18.53M–37.06M for a parameter-only update re-
spin. Under the OpenAI-scale deployment, the 3-Year Total
Cost of Ownership (TCO) is lowered by 41.7–80.4× compared
to H100 clusters with annual parameter updates under the
OpenAI-scale volume, and the total carbon footprint (tCO2e)
is lowered by 357×.

This paper makes the following contributions:
• We explored the concept and feasibility of Hardwired
LPU for the first time.

• We propose the Metal-Embedding methodology, re-
duced the photomask cost of Hardwired LPU by two
orders of magnitude.

• We detailed the architecture and dataflow of the first
Hardwired LPU design, HNLPU. It implemented a gpt-
oss 120 B (FP4) in 13,232mm2 total die area, achieving
unprecedented throughput and energy efficiency.

• We estimated the NRE, TCO, and tCO2e of HNLPU to
show its strong economical and environmental advan-
tage for typical cloud serving scenarios.

2 Background and Motivation
2.1 Hardwired Language Processing Units
In principle, orders-of-magnitude gains in computational effi-
ciency can be achieved by directly fabricating neural network
models into hardware. Since the 1980s, hardwired neural net-
works have been implemented in VLSI [31], optical [3, 90],
and printed flexible [10, 59, 66, 67, 88] circuits. However, the
diversity and rapid evolution of neural networks have ren-
dered such hardwired implementations of limited practical
value and prone to rapid obsolescence. As a result, instead of
hardwired neural networks, general-purpose processors such
as GPUs and NPUs have prevailed due to their programma-
bility. Contemporary AI infrastructure and software stacks
including programming languages (e.g., CUDA, Triton), li-
braries (e.g., cuDNN, flash-attn), frameworks (e.g., PyTorch,
vLLM) are built on a sweet spot between computational effi-
ciency and architectural generality.

20,000 Wafers
$ 360M

1 Mask set
$ 30M

$ (30M+360M)/500,000 units
= $ 780 per unit

5 Wafers
$ 90,000

200 Mask sets
$ 6B

$ (6B+90,000)/1 units
= $ 6B per unit

500,000 GPUs 1 Hardwired LLM

Figure 2. Economic challenges of hardwiring. Consid-
ering the cost on photomasks and wafers, the cost on pho-
tomasks was amortized by the mass production of GPUs.
Hardwiring an LLM incurs too many photomasks and too
low volume to amortize the NRE costs.

The rise of large language models (LLMs) has fundamen-
tally altered this landscape. Unlike earlier task-specific neu-
ral networks designed for isolated tasks, LLMs function as
general-purpose cognitive substrates capable of reasoning,
planning, and interacting across a wide range of domains.
For the first time in history, we possess a single neu-
ral network model that is valuable enough to justify
hardwired implementation.
Although technically hardwired (in the sense that its pa-

rameter weights are physically immutable), the circuit em-
bodies a new paradigm of the general-purpose processor. We
refer to this novel processor paradigm as the Hardwired Lan-
guage Processing Unit (Hardwired LPU). By leveraging the
emergent capabilities of in-context learning and zero-shot
reasoning, a hardwired LPU treats natural language prompts
as a high-level instruction stream, effectively replacing the
traditional binary Instruction Set Architecture (ISA) with
a semantic interface. Consequently, the user programs the
Hardwired LPU not by altering its models and weights, but
by prompting with tokens to perform arbitrary tasks.
In this paper, we demonstrate that a single-node Hard-

wired LPU can outperform a middle-sized GPU cluster with-
out requiring expensive software support, thus establish-
ing a decisive operational-expenditure (OpEx) advantage
over challengers. Therefore, we envision Hardwired LPUs
as game-changing platforms for long-term, high-volume de-
ployment, while GPU clusters assume the role of short-cycle
model development and evaluation testbeds.

2.2 Economic Challenges
A glaring challenge has thwarted all ambitious attempts to
hardwire LLMs: LLMs are too large for the current lithographic
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technology. The practical obstacle lies in the non-recurring
engineering (NRE) cost, primarily the cost from photolitho-
graphic masks.
In semiconductor technology, chips are fabricated as lay-

ered structures defined by photomasks (analogous to sten-
cils). Front-end-of-line (FEOL) processes, which form the de-
vice cells (transistors) on the silicon wafer, typically require
on the order of 30mask layers, while back-end-of-line (BEOL)
processes, which form the metal interconnect stack, require
approximately 40 additional mask layers. At 5 nm technol-
ogy nodes, a full photomask set is valued at $ 30M, while
each processed wafer is valued at approximately $ 18,000.
As shown in Figure 2, the high NRE cost of photomasks is
meant to be amortized withmassive production. For example,
NVIDIA is estimated manufacturing 20,000 wafers of H100
GPU, then the amortized photomask cost would be $ 1,500
per wafer. However, the expected production volume of hard-
wired LPUs is very low. Due to the extreme computational
efficiency, tens of wafers would oversaturate current LLM
service demand on the planet, which renders the expensive
photomask set for few uses only.
A straightforward implementation would require an ex-

traordinarily large silicon area to embed the weights, and a
correspondingly large number of photomask sets. For exam-
ple, the typical transistor density of high-density 5 nm tech-
nology is around 138MTr/mm2. FP4 Constant MAC (CMAC)
requires 200+ transistors. This translates gpt-oss 120 B into
an ideal area estimation of 176,000mm2 divided into 200+
chips. Due to reticle size limits, this hardwired LPU must be
split across 200+ photomask sets. Unlike prior wafer-scale
practices, these masks are heterogeneous because each chip
is carrying different parts of the model weights. This in-
curs $ 30M × 200 = $ 6 B NRE costs on photomask making,
rendering a straightforward hardwired LPU economically
prohibitive.

Compounding this economic infeasibility is the fast LLM
development cycles. The prohibitively high NRE is even
worse when considering the annual parameter updates and
3-year typical lifespan of production LLMs (e.g., GPT-4).
This multiple-orders-of-magnitude cost gap is unlikely to
be bridged solely through model compression. Note that the
gpt-oss is already FP4 by default. The model size has a con-
crete lower bound implied by the Kolmogorov complexity
of human knowledge representation.
To realize the concept of hardwired LPUs, there must be

fundamental breakthroughs in on-die weight embedding
methodologies. By co-optimizing with lithographic technol-
ogy factors, we can achieve multiple orders-of-magnitude
reduction in photomask count, eventually clear the path to
the economically viable hardwired LPUs.

1
0
0
0
0
1

x1 x2 x3 x4

×a ×a ×c ×c

ax1+ax2+cx3+cx4

+

x1 x2 x3 x4

+ +

×a ×c

+

a(x1+x2)+c(x3+x4)

+

1
1
0
1

0
0
1
1

1
1
0
1

0
1
0
0

x1 x2 x3 x4

c
s

00

01
01
10
10
01
00

LSB

MSB

LSB

MSB

Figure 3. Key arithmetic techniques. To the middle: Com-
bining repeated multipliers via the distributive law. To the
right: Using Carry Save Adders (CSA) on bit-serialized inputs
to trade time for area.

3 Metal-Embedding
Weaddress this economical challengewith the novelMetal-

Embedding (ME) methodology. There are two key innova-
tions in ME. 1) The Hardwired-Neuron (HN) architecture re-
arranges conventional multiply-accumulate arithmetic units
into accumulate-multiply-accumulate, and lifted the embed-
ding of weight parameters from silicon devices into metal
interconnections. This enables 2) the Sea-of-Neurons archi-
tecture – a metal-programmable structured ASIC saving
photomasks through a prefabricated array of HNs.
3.1 Hardwired-Neuron Architecture

Wedemonstrate the step-by-step evolution from the straight-
forward FP4 multiply-and-accumulate units to Hardwired-
Neurons (HN). Several key arithmetic techniques are applied
to minimize the required silicon area.

Basic: Weight Constancy. Conventional hardwiring (the
$ 6 B scenario) utilizesweight constancy. By fixing theweights,
multipliers could be optimized asmultiply-by-constantwhich
is several times lower in Boolean complexity. An FP4multiply-
by-constant unit is∼6× smaller than an FP4multiplier as seen
in GPU. Accumulation could also benefit from the weight
constancy under the help of optimizing EDA tools.

Step 1: Distributive Law. In conventional hardwiring,
FP4 weights have 16 unique values, but there are 2,8801
constant multipliers in each neuron. Most of them are re-
peated. By the distributive law, common multipliers could
be extracted and combined. As shown in Figure 3, instead of
performing 𝑎𝑥1 + 𝑎𝑥2 + · · · + 𝑎𝑥𝑛 (to the left), HN performs
𝑎 (𝑥1 + 𝑥2 + · · · + 𝑥𝑛) (to the middle) which saves multipliers
and reduces the width of accumulation.

Step 2: Bit-serialization. If input signals 𝑥1, 𝑥2, . . . , 𝑥𝑛
are in binary format, they could be serialized from the least-
significant bit (LSB) to the most-significant bit (MSB) to
further simplify the circuit. As shown in Figure 3 (to the
right), the single-clock-cycle accumulation could unfold into
amultiple-clock-cycle tree of Carry Save Adders [38], trading
off speed for minimized area.
1The hidden size in gpt-oss 120 B.
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×a ×b×a ×c ×c ×c ×a ×b ×a ×a ×a ×c ×d ×a ×c ×c
8b

4b

12b

x1 x16x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

σ❶ Cell-embedding of Weights

+

++

1b

12b

x1 x16x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

σ❷Metal-embedding of Weights
1b

Des

+

4b

+

×b×a ×c ×d

Figure 4. Hardwired-Neuron architecture. ❶ A conven-
tional cell-embedding neuron contains 2,880 4b multipliers
(16 shown) followed by an 8b×2,880 adder tree, where 2,880
is the hidden size in gpt-oss 120 B; ❷ With ME, Hardwired-
Neurons accept 1b serialized inputs (LSB-first), (1) route the
inputs multiplying the same weight value to the same re-
gion, (2) perform accumulation (POPCNT) on these input
signals, (3) perform actual multiplication with 16 multipliers
(4 shown), (4) sum the results with a 4b×16 adder tree. Note
how ❷ is significantly smaller in area than ❶ by reducing
the number of multipliers and the strength of adders.

HN is an accumulate-multiply-accumulate unit adopting
all of the above-mentioned techniques as shown in Figure 4.
The main result of the sophisticated combination of these
techniques is thatHN lifted the embedding of weight pa-
rameters from silicon devices into metal interconnec-
tions, as the name Metal-embedding suggests. Conventional
neurons are Cell-Embedding (CE, Figure 4❶), i.e., weight pa-
rameters are written into the silicon device cells composed
of different constant-multipliers; HNs are Metal-Embedding
(ME, Figure 4❷), i.e., the weight parameters are embedded as
metal wires. The silicon device cells in HN can be made
parameter-independent.
Figure 5 shows the weight embedding process through

metal wires step-by-step. For each unique value in FP4, there
is an accumulator (POPCNT) in the HN. We denote the ac-
cumulators corresponding to each unique weight value with
different colors (FP4 has 16 unique values, 4 shown in the
schematic: blue for 𝑎; green for 𝑏; red for 𝑐; violet for 𝑑).
For each input 𝑥𝑖 , the weight 𝑤 is embedded as a metal
wire connecting input 𝑥𝑖 to the accumulator for the value
𝑤 . For example, as the first term is 𝑎𝑥1, a metal wire is built
connecting 𝑥1 to the blue accumulator (Figure 5❶). Note
how the silicon devices are made parameter-independent:
changing the weight from 𝑎 to 𝑏 would only change the wire

×a
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x1 x16x2 x3 x4 x5 ……

+

ax1

x1

×b×a ×c ×d

+ + + +
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×b×a ×c ×d
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x3
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❶

❷

❸

❹

Figure 5. Step-by-step schematic showing how weights
are physically embedded in the 3Dmetal wire topology.
HNs are accumulate-multiply-accumulate arithmetic units
where each weight parameter is expressed by the source and
destination of a metal wire: ❶ 𝑎𝑥1 by connecting from 𝑥1
to the blue region; ❷ 𝑎𝑥2 by connecting from 𝑥2 to the blue
region; ❸ 𝑐𝑥3 by connecting from 𝑥3 to the red region; ❹ 𝑐𝑥4
by connecting from 𝑥4 to the red region.

destination from blue to green, while the whole accumulate-
multiply-accumulate arithmetic unit is kept unchanged.
To address the imbalance of weight values, the size of

accumulators should be made with sufficient slackness. The
accumulators could be implemented as multiple slices and
be reconfigurable through metal wires. Unused ports on the
accumulators are connected with zero inputs (ground).
Figure 6❷ provides an intuitive conceptual schematic of

ME. The die is split into HNs; each HN is drawn as a ↖↘ row
in the schematic. Each HN corresponds to an output neuron
activation in the model. Each HN is divided into several
regions (different coloring in the schematic), where each
region represents a unique weight value. For 4b precision
models, there are 24 = 16 unique weight values (4 shown in
the schematic). To multiply with a weight, the input neuron
activation signal is routed into the corresponding region via
metal wires. The model weights are solely embedded within
the metal interconnection, expressed by connecting each
input signal with corresponding regions.

The key insight here is that, as the metal wire topology is
three-dimensional, they could potentially embed information
in a much higher density than silicon devices. Current CE
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Unique Weights

Metal Wire

❶ Cell-embedding of Weights

❷Metal-embedding of Weights

Hardwired-Neurons
(1b POPCNT)

Constant Multipliers
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Figure 6. Conceptual schematic of Metal-Embedding. ❶ Conventional design embeds weights in the 2D grid of cells.
Metal layers are only for physical design (P&R). ❷ Metal-Embedding dramatically increases the density by leveraging the 3D
topology structure of metal wires, emulating the axon-dendrite in brains.

methodologies (Figure 6❶) fail to recognize metal layers in
their architecture design. Metal layers are only considered
in physical design (place-and-route, P&R), thus the topology
of metal wires does not express any specific information.
We view this as a waste of resources. Since silicon devices
are the area-limiting factors in the design, routing signals
through complex metal wires is virtually free in both area
and energy, compared with logic implemented in standard
cells.We refer to the novel architecture asHardwired-Neurons
because of its structural similarities with biological neurons.
Biological neurons in the brains have complex topology of
axon-dendrite interconnections in the first place, only then
come synaptic weights.
When adopted alone, the HN architecture increases the

density of hardwired LLM by an order of magnitude (from
200+ chips to 16 chips). But more importantly, HN concen-
trates all the parameter-dependent structures into metal
wires, which is a prerequisite step towards introducing the
Sea-of-Neurons architecture.

3.2 Sea-of-Neurons Architecture
Up to this point, there are two common concerns to ad-

dress: 1) The NRE is still high. Even with significantly
reduced area of HN, 16 chips still require 16 full mask sets
each valued $ 30M, that is $ 480M. The total NRE still offset
most economic interests. 2) What if the weight parame-
ters change? LLM requires at least annual updates to keep
competitive, and there would be unforeseen hotfixes. Do we
need another $ 480M for a Hardwired LPU re-spin?

The key to these concerns is to share and reuse parameter-
independent photomasks. As the silicon devices in HN are
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Figure 7. The cross section of chips [76]. Geometric pat-
terns in semiconductor chips are defined by photomasks.
Silicon devices and lower metal layers have finer geometric
features and thus require much more expensive photomasks
to define them.

parameter-independent, we can prefabricate HN arrays with
a shared photomask set, then finalize the metal embedding
wires with a few additional parameter-dependent photomask
layers. By concentrating metal embedding wires into higher
level metal layers, the majority of the photomask cost can
be saved. The 16 chips could share the same photomask set
for the prefabricated HN array, and the photomask set could
be reused for future weight update re-spins.
Different layers of photomask in the set are valued dif-

ferently. Generally speaking, higher levels use cheaper pho-
tomasks. As shown in Figure 7, silicon devices and lower
metal layers have finer feature dimensions and requires high
resolution lithographic patterning which is expensive. For
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Sea-of-Neurons
60 Mask Layers
$ 27.7M

Chip 1
+10 Layers

+$ 2.3M

Chip 2
+10 Layers
+$ 2.3M

FEOL/BEOL	M0‐M7
Devices,
Local-connections
40 DUV + 12 EUV
Homogeneous

BEOL	M8‐M11
Metal-Embedding
10×#Chips DUV

BEOL	M12+
Power, Peripheral
8 DUV
Homogeneous

Figure 8. Sea-of-Neurons Architecture. To the top: All
chips share the same prefabricated HN array and 60 layers
of photomask, then the embedding metalization (M8-M11)
requires additional 10 layers of photomask per chip. To the
bottom: The schematic from cross section with opened HN
module box, showing devices and local metal wires (M0-M7)
inside the HN array that are made homogeneous and mask-
sharing. Note all the critical layers requiring EUV are shared.

example, metal layers at M10–M11 (∼60 nm half-pitch) re-
quire Deep Ultraviolet (DUV) single-exposure patterning
(193i SE); at M4–M9 (∼40 nm half-pitch), DUV double pat-
terning is required (typically 193i SADP, with some lay-
ers modeled as LELE); at M0–M3 (∼20 nm half-pitch), DUV
quadruple patterning (193i SAQP) or Extreme Ultraviolet
Lithography (EUV SE) is required. FEOL processes making
devices and contacts also require expensive EUV or DUV
multiple patterning. Top metal layers including M12+ are
typically reserved for power delivery networks, clock trees,
and I/O peripherals. Therefore, we select M8-M11 (involv-
ing 10 layers of DUV photomasks, valued $ 2.31M) as the
metal-embedding layers.
The integrated circuit design approaches to save pho-

tomask costs by semi-custom metalization over a prefab-
ricated array of cells are known as Structured ASIC [94], and
have emerged throughout history, including gate arrays in
the 1970s, sea-of-gates in the 1990s [20], Altera HardCopy
in the 2000s [56], and Intel eASIC N5X in 2020 [39]. As our
approach is prefabricating arrays of neurons instead of gates,
we refer to it as the Sea-of-Neurons architecture.

Figure 8 illustrates the Sea-of-Neurons architecture. Sea-
of-Neurons is a metal-programmable architecture: Weights
are programmed into the architecture with M8-M11 metal-
ization over a prefabricated HN array. As 60 out of 70 mask
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Figure 9. The overall architecture of HNLPU system.
(a) System-level architecture of HNLPU, featuring a logical
4 × 4 row-column fully-connected fabric to interconnect its
16 modules. (b) Architecture of a single compute module,
comprising the core die and HBM.

layers are shared (including all critical layers requiring EUV),
the photomask cost is significantly reduced from $ 480M to
$ 65M 2. When the weight parameters change, a re-spin re-
quires only $ 37M 3 as the prefabricated HN array is ready.

The Sea-of-Neurons architecture is compatible with stan-
dard ASIC design flow and EDA tools. First, complete the
P&R of the HN array module under standard cell constraints
within M0-M7. The layout of HN is copied to fill the major
part of die area, equipped with all SoC peripherals, power
grid, and clock tree. Next, the layout is exported to custom
tools which readweight parameters and generate TCL scripts
to instruct the connection of metal embedding wires. The
generated script is integrated into the overall layout within
the P&R EDA tool. The resulting complete design is then
subjected to design rule checking (DRC) and layout-versus-
schematic (LVS) verification, with detected rule violations
resolved through automated local repair. Finally, parasitic ex-
traction and post-layout simulation is conducted to evaluate
functional correctness and timing behavior under realistic
physical effects. In our experiments, the layouts successfully
completed the sign-off checks showing ample routing den-
sity margins in both M0-M7 and M8-M11.
4 Architecture
In this section, we introduce the architecture of HNLPU in a
top-down manner, as shown in Figure 9, including system
integration and single chip architecture.

4.1 Overview
HNLPU is a complete physical implementation of gpt-oss
120 B and its computational process for inference. HNLPU

2$ 27.69M (the prefabricated HN array) + $ 2.31M (M8-M11 metalization
per-chip) × 16 (number of chips)
3$ 2.31M (M8-M11 metalization per-chip) × 16 (number of chips)
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system directly implements Continuous Batching on hard-
ware to fill its pipeline. The hardware receives token IDs
and generates token IDs as outputs, operating without a
software stack (OS, runtime, library, compilers, frameworks).
This pure hardware implementation offers two benefits: 1) It
eliminates the heavy software development andmaintenance
cost. 2) It eliminates the software turbulence and brings more
deterministic and predictable system behavior.
HNLPU distributes the weights across 16 chips intercon-

nected via CXL. Besides the HN array, the chips also imple-
ment embedding dictionary lookup, Grouped Query Atten-
tion (GQA), Mixture-of-Experts (MoE) routing, Root-Mean-
Square Normalization (RMSNorm), Swish-Gated Linear Unit
(SwiGLU), and logit sampling. A memory subsystem is im-
plemented for the embedding dictionary and the attention
buffer (KV Cache), including SRAM and HBM.

4.2 System Integration
Interconnection topology. HNLPU system architecture

is built upon a 16-module row-column fully-connected fab-
ric. As conceptually illustrated by the logical topology in
Figure 9(a), this fabric establishes direct, point-to-point links
from each module to all other modules within its row and,
simultaneously, to all other modules within its column. This
design creates a router-less, low-latency network for efficient
collective communication patterns (e.g., All-Reduce). Each
compute module is a self-contained unit, equipped with a
dedicated HBM for storing the KV Cache and the embedding
tables.

Multi-chip group mapping. HNLPU evenly distributes
its constituent chips into multiple row- and column- groups,
with each row and column containing 4 chips. This grouping
strategy enables a parallel mapping of the self-attention and
feed-forward network—the most computationally intensive
parts of a Transformer block. Specifically,
1. For the GQA projection, the projections for all query, key,

and value heads are uniformly mapped to their respective
column groups.

2. For attention score, query-heads are all-reduced within
the same column groups, while key- and value- heads
are reduced to the chip-(ℓ mod 4), where ℓ denotes the
sequence length.

3. For the feed-forward network with MoE, all experts are
uniformly distributed to all chips, and the input vector
broadcasts to all chips. Specifically, each chip is responsi-
ble for 8 experts.
This group mapping strategy of HNLPU offers two key

advantages. First, by distributing the GQA computation uni-
formly, the workload is balanced across all chips. This alle-
viates pressure on key computational resources (e.g., VEX
units) and reduces the storage and bandwidth demands on
the SRAM and HBM. Second, the independence of the MoE
experts enables fully parallel FFN computation, eliminating

the need for data exchange during the projection steps. The
detailed execution process and dataflow are further elabo-
rated in Section 5.

Physical System Integration. The physical implementa-
tion of HNLPU is based on established, industry-validated
High-Performance Computing (HPC) integration practices.
Packaging: Each compute module utilizes 2.5D packag-

ing to integrate a large monolithic die with its dedicated
HBM stacks (conceptual topology is similar to the NVIDIA
Blackwell platform).
Inter-Chip Communication: Direct point-to-point in-

terconnects are established via the CXL 3.0 protocol (on PCIe
PHY). This open standard offers low latency (<100 ns) and
high bandwidth (128 GB/s per ×16 link), with performance
approaching proprietary solutions (e.g., NVIDIA NVLink).
Manufacturing Yield: The modular design enables a

"Known-Good-Module" strategy. Each packaged module is
tested independently, thus decoupling the final system’s as-
sembly yield from the challenging manufacturing yield of
the large monolithic dies.

ThermalManagement: For high thermal density, a Direct-
to-Chip Liquid Cooling (DLC) solution is employed bymount-
ing a cold plate on each module—an approach validated in
compute platforms such as the NVIDIA DGX H100.

4.3 Single Chip Architecture
As shown in Figure 9(b), each chip in HNLPU is composed
of five primary modules. The HN Array and VEX Unit are
responsible for the LLM computation, including operations
on hardwired weights, attention mechanisms, and nonlinear
activation functions. The Attention Buffer serves as the on-
chip KV Cache. Finally, the Control Unit manages on-chip
scheduling and inter-layer pipelining for multi-batch sce-
narios, while the Interconnect Engine facilitates inter-chip
communication.
The HN Array is a dedicated unit for performing com-

putations that involve the fixed and pre-trained weights. As
shown in Figure 4.❷, we use metal embedding strategy to
hardwire all the weights in the LLM onto the chip. Although
the HN Array has a large area, its power consumption is
remarkably low. This efficiency stems from the high sparsity
of circuit activity: only 4 out of 128 experts are active at any
given time in the target MoE architecture. For weight ma-
trices (e.g.,𝑊𝑞𝑘𝑣) that are partitioned across multiple chips,
each HN Array computes a partial sum. This result is then
forwarded to the Interconnect Engine for aggregation with
corresponding partial sums from other chips.

The Vector Execution Unit (VEX) is responsible for exe-
cuting vector and matrix operations, including calculating at-
tention scores, applying nonlinear functions (e.g., RMSNorm,
SwiGLU, softmax), performing residual additions, and han-
dling output sampling. 1) VEX adopts the FlashAttention
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computation flow to calculate attention scores. The hard-
ware implementation consists of GEMV units and nonlinear
operators. It fetches queries from the Interconnect Engine
and reads keys/value (K/V) pairs from the on-chip Buffer.
For each chip, the VEX unit is designed to process 32 cached
KV-heads per cycle without stalling. 2) VEX also integrates
dedicated nonlinear modules for the efficient computation of
RMSNorm, SwiGLU, and softmax operations. Additionally,
it includes a vector-aligned adder for residual connections
and a specialized unit to perform multinomial sampling.

Attention Buffer. The on-chip 320MB Attention Buffer
comprises 20,000 banks, each with a 16KB capacity. Every
bank features a 1W1R (one-write, one-read) port configura-
tion with a 32-bit access width. The Attention Buffer primar-
ily functions as a KV Cache for the chip’s assigned attention
groups. It offloads excess KV entries to HBM only when the
on-chip capacity is exceeded. This buffer also stores activa-
tion vectors for residual connections in the FFN blocks.

Interconnect Engine and Control Unit. The Intercon-
nect Engine and Control Unit on each chip jointly manage
all inter-chip communication and data collectives. The com-
munication topology is organized into row-wise and column-
wise groups, each with specific supported operations: 1) For
row-wise communication, the system supports a Broadcast
to distribute data (e.g., the activation vector) to all chips
within the same row, and a corresponding Reduce opera-
tion to aggregate the partial sums computed by each chip
in that row. 2) For column-wise communication, the system
distributes inputs to chips within a column using either a
Scatter operation, which provides each chip with a distinct
portion of a vector, or a Broadcast operation, which provides
all chips with the identical vector. To collect the results, the
system supports both Reduce for aggregating partial sums
and Gather for concatenating output vectors.

5 Execution Dataflow
In this section, we introduce the multi-chip interconnect
dataflow of HNLPU, covering the model-to-chip mapping
and the computing process of a Transformer block. In Sec-
tion 5.1, we provide an overview of HNLPU dataflow. Sec-
tion 5.2 details our pipelining strategy and batching inference
scheduling. Detailed description of the dataflow is presented
in Appendix A.

5.1 Dataflow Overview
Figure 10 illustrates the dataflow of HNLPU. Our design is
driven by the primary goals of distributing computational
load, KV cache memory access, and thermal loads, while
minimizing inter-chip data communication.
Processing begins with fetching a token vector of shape

(1, 2880) from the High-Bandwidth Memory (HBM) based on
the received token index. This vector then traverses through
36 transformer blocks, where self-attention and feed-forward
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network (FFN) computations are performed layer by layer.
For the multi-head attention module, we employ a hybrid
weight distribution strategy: the𝑊𝑞𝑘𝑣 weight matrix is par-
titioned column-wise across different chip column groups,
while the𝑊𝑜 weight matrix is partitioned row-wise across
the same set of chips. This design allows for parallel, inde-
pendent computation across different chip columns for the
𝑊𝑞𝑘𝑣 operations and across different chip rows for the subse-
quent𝑊𝑜 computations, thereby minimizing inter-chip data
transfer.

The FFN implementation, which uses aMixture-of-Experts
(MoE) architecture, assigns eight experts to each chip, allow-
ing for entirely independent computation with no inter-chip
communication. A key exception to our partitioning strategy
is the router weight matrix,𝑊rout, which is replicated across
all chips. This deliberate design trade-off introduces a negli-
gible area overhead—as the router’s weights constitute only
about 0.01% of the total model weights—but eliminates the
communication latency. Once all transformer blocks have
been processed, the final output vector is passed through
the unembedding layer, and a new token index is calculated
through a sampling operation. Detailed description of the
dataflow is presented in Appendix A.

5.2 Pipeline and Scheduling
HNLPU employs a nested pipelining strategy to maximize
throughput, consisting of both inter-layer and intra-layer
pipelining. Since all layer weights are hardwired onto the
metal layers, the wiring weights for each layer have their
own corresponding computing resources. HNs of each layer
can operate simultaneously, which facilitates the straight-
forward formation of a pipeline between the model layers.
Within a layer, we partition the computation into a six-stage
pipeline, as shown in Figure 11. Consequently, HNLPU can
process up to (6 × #layer) requests simultaneously at peak.
For the 36-layers LLM, the maximum batch size can theoret-
ically reach 216.
HNLPU employs the batching strategy similar to Con-

tinuous Batching [91]. During the prefill phase, there are
no dependencies between the input tokens of a sequence.
This independence allows for massively parallel processing,
with tokens flowing through the pipeline stage-by-stage.

Consequently, HNLPU can process up to 216 tokens con-
currently during prefill. Conversely, the decode phase is
auto-regressive, meaning the generation of each new token
is dependent on the completion of the previous one. How-
ever, since different sequences are independent, HNLPU can
still process up to 216 sequences simultaneously. In summary,
HNLPU supports a maximum batch size of 216 sequences.
By leveraging Continuous Batching, the system dynamically
schedules new sequences into the batch as soon as slots are
freed by completed ones, thereby ensuring high throughput.

6 Methodology
This section details the methodology used to evaluate pro-
posed HNLPU architecture. We describe our hardware eval-
uation flow, the system-level modeling for multi-chip design,
the model used for performance assessment, and the config-
urations of all baseline systems.

6.1 Hardware and System-Level Evaluation
Hardware Implementation. We implemented the core

components of HNLPU architecture, including HN Array,
Control Unit, VEX, Interconnection Engine and on-chip At-
tention Buffer in RTL with Verilog, and verified the cor-
rectness of the RTL design using extensive test cases. We
followed a standard ASIC design flow to obtain physical
characteristics. The design was synthesized using Synopsys
Design Compiler and placed-and-routed using Synopsys IC
Compiler, on 5 nm technology. Power consumption was ana-
lyzed by PrimeTime PX using workload-derived switching
activity (SAIF file) to accurately model both static and dy-
namic power. On-chip SRAMs were generated and analyzed
using Memory Compiler on the same technology node.

Multi-chip System Modeling. Our proposed HNLPU is
a 4×4 multi-chip system interconnected via the CXL 3.0 pro-
tocol. We evaluated the inter-chip communication latency
and power using CNSim [25], a state-of-the-art open-source
analysis framework for multi-chip systems. This framework
allows for detailed modeling of the network on package
topology, accounting for physical layer (PHY) latency, proto-
col overhead, and physical routing delays in our design. We
also built a cycle-level simulator for single-chip performance
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evaluation.

6.2 Model
We selected the OpenAI gpt-oss 120 B model for system-
level evaluation. It is a state-of-the-art open-source MoE
large language model built on Llama-style architecture. We
used 4-bit quantized version of the model and hardwiring
the weights in HN Array. HNLPU implementation of the
model follows partitioning method, dataflow and mapping
strategies detailed in Section 4 and Section 5.

6.3 Baseline Configurations
We conducted two sets of experiments to comprehensively
evaluate our architecture against relevant baselines.

EmbeddingMethodology Comparison. This benchmark
compares the performance of a single matrix-vector multi-
plication: 1× 1024 input vector with a 1024× 128 FP4 weight
matrix (typical dimension in an LLM attention block) under
various embedding methodologies. We compare three de-
signs at 5 nm technology:MAC Array (MA), a 64 KB SRAM
companioned with a conventional computing array of 1024
MACs,Cell-Embedding (CE) andMetal-Embedding (ME)
as illustrated in Figure 4. Regarding area, we compare CE
and ME with the 64 KB SRAM only, excluding the arbitrarily-
sized computing array.

System-Level Performance Comparison. This experi-
ment compares our full HNLPU architecture against leading
commercial systems running the same gpt-oss 120 B model
with a 2K token length, with hyperparameters for each sys-
tem individually tuned to achieve its optimal throughput.
1. NVIDIA H100: We conducted direct measurements on

a server equipped with H100 (80GB memory, 3.35 TB/s
bandwidth) GPU. The model was deployed via TensorRT-
LLM, and the reported figures are averaged over multiple
runs.

2. Cerebras WSE-3: The throughput was empirically mea-
sured through publicly accessible Cerebras cloud service [8]
running the gpt-oss 120 B model. As power measurement
on cloud is not practical, we adopted the system power
figures reported in [46] instead.

3. HNLPU: We utilize post-PnR simulations capturing phys-
ical layout parasitics and wire delays. This approach pro-
vides high-fidelity performance projection, as HNLPU op-
erates on a deterministic Token-In-Token-Out execution
model free from software-stack variability.

7 Evaluation
7.1 Layout Characteristics
To validate the physical feasibility of HNLPU, we conducted
a sign-off-grade implementation flow across representative
PVT corners. The design achieves timing closure at 1.0 GHz
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Figure 12. Area Comparison.
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Figure 13. Time and Energy Comparison.

Table 1. Single Chip Hardware Characteristics

Area (mm2) % Power (W) %

HN Array 573.16 69.3 76.92 24.94
VEX 27.87 3.4 33.09 10.73
Control Unit 0.02 0.0 <0.01 0.0
Attention Buffer 136.11 16.5 85.73 27.80
Interconnect Engine 37.92 4.6 49.65 16.10
HBM PHY 52 6.3 63 20.43

Total 827.08 100.0 308.39 100.0

under worst-case conditions (SSG, 0.675V, 125 °C), ensur-
ing robust operation under extreme process variations and
voltage drops. The design achieves a congestion-free lay-
out with zero overflow. The routing density on ME layers
(M8–M11) remains below 70% (lower than typical acceler-
ators), validating the feasibility of ME strategy. Signal in-
tegrity is confirmed by parasitic extraction (avg. 𝑅 = 164Ω,
𝐶 = 7.8 fF), showing manageable coupling effects. Thermal
analysis confirms that the power density (avg. 0.3W/mm2,
peak 1.4W/mm2) is well within the cooling limits of 2.5D
packaging. Finally, the layout is DRC/LVS clean, and yield
estimation based on Murphy’s model (defect rate 0.11/cm2)
confirms the manufacturability of the design.

Table 1 presents the area and power breakdown of a single
chip in HNLPU. The HN Array and the Attention Buffer are
the dominant components in terms of both area and power.
The chip occupies a total area of 827.08mm2 and has a power
consumption of 308.39W.
The Attention Buffer sustains 80 TB/s bandwidth and 3-

cycle latency under worst-case PVT conditions, confirming
sufficient performance margins.

The power density of the HN array is significantly lower
than other components due to the sparse circuit activity
induced by MoE. Specifically, only 4 out of 128 experts are
activated at a time.
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Table 2. System-Level Performance and Efficiency Compar-
ison for gpt-oss 120 B Inference

Metric HNLPU H100 WSE-3a

Core Performance
Throughput (tokens/s) 249,960 45 2,940

Physical Characteristics
Technology Node 5 nm 5 nm 5 nm
Total Silicon Area (mm2) 13,232 814 46,225
System Footprint (Rack Units) 4 U 1U 16U

Power & Efficiency
Total System Power (kW) 6.9 1.3 23.0
Energy Efficiency (tokens/kJ) 36,226 34.6 127.8
Area Efficiency (tokens/(s·mm2 )) 18.89 0.055 0.064

a WSE-3 data is obtained from published reports [9, 46, 58, 85]
and calibrated against performance on its public cloud ser-
vice [8].

7.2 Embedding Methodology Comparison
Figure 12 presents the post-layout area comparison using the
SRAM inMA as a base unit. The area of CE/SRAM(MA)/ME is
14.3×/1×/0.95×, respectively, validating the claimed density
advantage of ME.

The performance and energy consumption results are illus-
trated in Figure 13. Both the ME and CE designs demonstrate
a dramatic reduction in execution cycles compared to theMA
by fully parallelizing the computation. Constrained by the
need to fetch weights from SRAM and its limited multiplier
array, the MA requires significantly more cycles to complete
the same task. The energy reduction of ME is also signifi-
cant. It consumes the least energy by completely eliminating
memory access. While the CE also eliminates power from
SRAM access, its massive area leads to substantial leakage
power, making it less energy-efficient than ME. The energy
consumption of MA is mainly driven by repeated, power-
intensive accesses to its SRAM.
In summary, the experimental results demonstrate the

comprehensive PPA superiority of the ME design at the op-
erator level. This validates the effectiveness of ME as the
fundamental building block for LLM accelerators.

7.3 System-Level Performance Comparison
This section provides a comparison of the system-level per-
formance and efficiency of HNLPU, NVIDIA H100, and Cere-
bras WSE-3 on gpt-oss 120 B model, as detailed in Table
2. HNLPU demonstrates orders-of-magnitude advantages
in both throughput and energy efficiency, achieving up to
5,555× and 85× throughput, and 1,047× and 283× energy
efficiency, respectively. HNLPU’s superior performance and
efficiency stem from a fundamental architectural redesign
that diverges from conventional systems.
First, HNLPU physically hardwires model weights into
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Figure 14. Execution time breakdown across varying
context lengths. The total execution time is decomposed
into inter-chip CXL communication, projection, non-linear
operations, attention computation and memory access stalls.

the compute fabric. This creates massive, fine-grained paral-
lelism and inherently supports ultra-high throughput infer-
ence.
Second, as a direct consequence, this design completely

eliminates the need to access weights from the memory
hierarchy (e.g., SRAM, DRAM), thus avoiding the immense
energy cost of memory access.
Finally, HNLPU operates on a highly optimized, model-

specific dataflow, workload partitioning, and pipelining strat-
egy, which contrasts with the instruction-driven paradigm of
GPUs. This eliminates the significant overhead from control
unit such as instruction decoding, scheduling, and control
flow. It ensures that nearly all time, power, and area are
dedicated to effective computation.

7.4 Execution Time Analysis
Figure 14 presents the execution time breakdown across
varying context lengths. Memory access latency is effectively
hidden by the double-buffering mechanism: stalls remain
negligible up to 256K tokens, and reach 10.7% at an extreme
context length of 512K, where KV cache is loaded from off-
chip HBM. In terms of breakdown, the highly optimized
computing components expose inter-chip communication
as the dominant factor at shorter lengths, while attention
computation becomes dominant as the sequence length in-
creases.

7.5 Economic Analysis and Carbon Footprint
We present a comprehensive Total Cost of Ownership (TCO)
analysis over a three-year lifecycle in Table 3. We compare
HNLPU against an equivalently provisioned NVIDIA H100
GPU cluster delivering comparable inference throughput.
We consider two representative deployment volumes: a low-
volume deployment corresponding to a single HNLPU node,
and a high-volume scenario corresponding to an OpenAI-
scale deployment [63, 64]. We provide both optimistic and
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Table 3. Total Cost of Ownership (TCO) Analysis for LLM Inference over a 3-Year Lifecycle.

Parameter Category Low Volume High Volume
HNLPU H100 HNLPU H100

System Configuration & Power
Number of Systems / GPUs1 1 2,000 50 100,000
Total Datacenter Power (MW)2 0.010 3.64 0.483 182

Capital Expenditure (CapEx)
Node Price3 $ 59.25M ∼ 123.3M $ 79.99M $ 62.83M ∼ 129.9M $ 4,000M
Data Center Infrastructure4 $ 0.2100M $ 54.93M $ 10.30M $ 2,747M
Total Initial CapEx $ 59.46M ∼ 123.5M $134.9M $ 73.13M ∼ 140.2M $6,747M
Update Re-spin Cost5 $ 18.53M ∼ 37.06M $ 0.00 $ 22.11M ∼ 43.68M $ 0.00

3-Year Operational Expenditure (OpEx)
Electricity Cost6 $ 0.0250M $ 9.088M $ 1.206M $ 454.4M
Maintenance & Support7 $ 0.0730M ∼ 0.1353M $ 47.24M $ 0.3650M ∼ 0.6765M $ 2,362M

3-Year Total Cost of Ownership (TCO)
Static Model (No Updates) $ 59.56M ∼ 123.7M $ 191.2M $ 74.70M ∼ 142.1M $ 9,563M
Dynamic Model (Annual Updates) $ 96.62M ∼ 197.8M $ 191.2M $ 118.9M ∼ 229.4M $ 9,563M

Sustainable AI Support
Total Emissions (tCO2e) (Static / Dynamic)8 102.0 / 106.0 36,600 4,924 / 5,124 1,830,000

All figures are rounded to four significant figures. Appendix B presents the detailed assumptions and source references.

pessimistic estimates to account for the sensitivity of key
assumptions. For detailed assumptions and source references,
please refer to Appendix B.
In the low-volume scenario, HNLPU reduces the initial

capital expenditure (CapEx) by 8.5–55.9% and reduces opera-
tional expenditure (OpEx) by a factor of 351.4–574.8×. This
OpEx advantage stems from the significantly reduced phys-
ical footprint and power consumption. Over a three-year
lifecycle, even though HNLPU incurs two annual update
re-spins, the TCO remains lower than, or breaks even with,
that of an H100 cluster delivering equivalent throughput. For
high-volume deployments, HNLPU reduces the initial CapEx,
OpEx, and TCO by factors of 48.1–92.3×, 1,496–1,793×, and
41.7–80.4×, respectively. This increased advantage stems
from amortizing the NRE costs over multiple sets of HNLPU.

Finally, we estimate the three-year equivalent carbon diox-
ide emissions. The carbon footprint of HNLPU is 357.2× and
371.7× lower than that of the H100 cluster, with and with-
out annual update re-spins respectively. This is attributed
to significant reductions in both hardware manufacturing
(embodied carbon) and power consumption (operational car-
bon).

8 Discussion
• Inference Volume. Section 7.5 analyzed low (single node
volume) and high (50 nodes, OpenAI-scale) volumes. These
volume settings are based on existing businesses. We antic-
ipate that the unprecedented performance of HNLPU will
unlock novel LLM application scenarios that were previously
infeasible, thereby stimulating further growth in inference
volume. As production volume increases, NRE costs are fur-
ther amortized, amplifying the cost advantages.

• Field-programmable vs Metal-programmable. 1) As
the Sea-of-Neurons architecture reduces the weight update
re-spin cost to a minor fraction of the TCO, we expect no
strong interest towards field-programmable architecture. 2)
Introducing area overhead (more chips) to implement dy-
namic routing would put even more pressure on the domi-
nant bottleneck of the multi-chip interconnection (Figure 14).
Advanced interconnection technology (e.g., wafer-scale in-
tegration) would put both HNLPU and field-programmable
LPU in a stronger position.

• Scalability. We estimate the initial NRE cost on making
HNLPU chips for various LLMs other than gpt-oss in Table 4.
Results suggest that a wide range of model sizes can be
deployed within an acceptable budget.

Table 4. Chip NRE prices on various models.

Kimi-K2 [78] DeepSeek-V3 [52] QwQ [79] Llama-3 [23]

Param. # 1 T 671 B 32 B 8 B
Price/M$ 462 353 69 38

• Yield and Fault Tolerance. Unlike mass-produced pro-
cessors, yield is a secondary factor to HNLPU. Assumption
of 1% yield implies producing ∼50× more wafers than calcu-
lated in Table 3. These wafers cost $ 0.5M/$ 22M in low/high
volume CapEx, which are marginal compared to the TCO.

•Model Updates.HNLPU updates are performance steps.
There is no task that GPT-5.2 can handle but GPT-5.1 cannot
attempt, just as the release of B100 did not render H100
obsolete. The "blue-green" deployment model can be adopted
for seamless updates: When a model update is validated on
GPU testbeds, new "green" HNLPU can be manufactured
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while the "blue" HNLPU continue serving traffic. Estimated
turnaround time is 6–8 weeks. The cost is comparable with
regular processor re-spins thanks to the Sea-of-Neurons.

• Futureworks. (1) Enhanced Flexibility on Sea-of-Neurons,
enabling hyper-parameter updates with annual re-spin by
programmable dataflow; (2) Automated Design and Test, in-
cluding an automated Hardwired-Neuron Compiler for short-
ening the delay in the design flow; (3) Extended Application
Scenarios, implementing conditional decoding (programmable
sampling algorithms), and support of use cases other than
generation (sequence scoring, text-embedding, etc.); (4) LoRA
for Post-Deployment Updates, adding∼1% field-programmable
HNs at side-channel to accommodate dynamic weights. How-
ever, we foresee no significant technical obstacles to imple-
menting these features on the HNLPU.

9 Related Works
This work is mostly inspired by the current progress in large
languagemodels. The success of GPT-3 has proven that LLMs
are few-shot learners [5]. DeepSeek-V3 [95] proved the great
benefits from specialization focusing on a single LLM. How-
ever, as a software company they have to build upon existing
hardware in the market. The mortal computing argument
fromHinton [37] also partly parallels our vision on extremely
specialized LPUs.
The first principle of DNN acceleration has been time-

multiplexing hardware neurons and capturing data reuse,
a widely held belief since DianNao in 2014 [11, 12, 22, 54,
92, 96, 97]. However, the data reuse chances are evaporat-
ing from modern LLM inference, which only has ∼1 op-
erational intensity in the autoregressive decoding process.
Most researchers agree that external memory accesses are
the key challenge, while having divergent visions of future.
Previous efforts focus on scheduling [6, 14, 57, 74, 77, 91],
quantization [18, 28, 47, 55, 71], sparsity [29, 84, 86, 98], spec-
ulative decoding [49], and revisiting spiking neurons [44],
but these techniques cannot fundamentally solve the mem-
ory access issue. The Process-In-Memory (PIM) architecture
has attracted considerable attention owing to its ability to
reduce data movement and alleviate external memory ac-
cesses [32, 33, 35, 36, 53, 93]. However, it cannot fundamen-
tally eliminate the memory accesses required for weight
loading, or suffers from high AD/DA overhead.
After the success of LLM, Language Processing Units

(LPU) are emerging as the next important processor scheme.
Groq released the first commercialized LPU, rebranded from
its Tensor Streaming Multiprocessor in 2022 [1], which at-
tempts to address the issue by incorporating huge on-chip
SRAM. Etched Sohu [89] is the most aggressively specialized
LPU project that etched Transformer model architecture
directly in the fabric. However, these LPUs failed to etch
weights, possibly due to the density and cost limitations ex-
plained in Section 2. Proposed by this paper, we expect that

Metal-Embedding will be the prerequisite technology for the
emerging fully-specialized LPU products.

Metal-Embedding shares some underlying techniqueswith
existing architectures: Bespoke ML inference fabrics Prim-
itivization architecture proposed by Cambricon-C [13], be-
spoke machine learning accelerators in printed and flexible
electronics [10, 59, 66, 88], bit-serial architecture explored
by Stripes [41], and the prefabricated wafers once emerged
as sea-of-gates architecture in 1990s [20].

10 Conclusions
This paper introduces the Hardwired-Neurons Language
Processing Unit (HNLPU), an extremely specialized proces-
sor that hardwires LLM weight parameters into its compute
fabric. Enabled by a novel Metal-Embedding methodology
that encodes weights in the 3D topology of metal wires, the
design achieves a 15× density improvement and reduces pho-
tomask costs by 112×. The resulting system demonstrates
unprecedented efficiency, delivering a 5,555× throughput
gain and a 1,047× energy efficiency improvement over H100,
establishing an economically viable, sustainable, ultra-high-
performance cognitive substrate for general tasks.
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A Detailed Dataflow Description
A.1 Grouped-Query Attention
Figure 10.(II) illustrates the computation dataflow of the 64
query heads projection. The token activation 𝑋 in the chip
array has shape (1, 2880). The activation 𝑋 in all chips is
split into four equal slices of (1, 720) and each chip takes one
of the slices to calculate the partial sum of the query tensor.
Each chip contains a private, hard-wired slice of𝑊𝑞 with
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shape (720, 1024) inside the HN array. Therefore the product
is generated locally and without any weight fetch. The four
partial products are summed by a column-internal reduce
operation, yielding a 16-head query vector (1, 1024). The 16
query heads are then reshaped into (2, 8, 64), reflecting the
Grouped-Query Attention structure where every 8 query
heads correspond to a single KV head.

Figure 10.(III) follows a similar spatial pattern for the key
path. Each chip multiplies its (1, 720) input slice with its
hard-wired𝑊𝑘 slice (720, 128) and emits a partial key vector
(1, 128). After the column-internal reduction and reshape,
the new key head of (2, 64) is held in chip# (# = ℓ mod 4,
where ℓ is the token’s position in the sequence). At this point
the data layout is intentionally asymmetric: the query vector
is fully replicated across columns, whereas each key vector
is unique per chip in the sequence dimension, a choice that
minimizes the traffic of the subsequent dot-product. The data
flow of 𝑋 ·𝑊𝑣 mirrors that of𝑊𝑘 .

Figure 10.(IV) shows the computation of attention weight
𝑍 in column-𝑖 chips. Every chip already has the complete
duplicate of the column-𝑖 𝑄 heads (2, 8, 64). The key ten-
sor is partitioned horizontally, each chip keeps cached 𝐾
with shape (2, 64, ℓ/4) in its local KV-cache (ℓ is the current
context length). The VEX unit multiplies 𝑄 head (2, 8, 64)
with 𝐾 (2, 64, ℓ/4) and produces the local attention weight 𝑍
(2, 8, ℓ/4). Because each chip sees only ℓ/4 tokens, a column-
wise all-reduce needs to be performed, after which every
chip completes the normalization of its local fragment.
Figure 10.(V) completes the attention score. 𝑉 is tiled ex-

actly like 𝐾 ; each chip reads a 𝑉 slice (2, ℓ/4, 64) from its
KV-cache. The VEX unit multiplies the 𝑉 (2, 8, ℓ/4) with the
local attention weight 𝑍 (2, 8, ℓ/4), and emits the partial-𝑂
tensors (2, 8, 64). A column-wise all-reduce needs to per-
form to add the four partial-𝑂 tensors. After that, all chips
in column-𝑖 contain the 16 heads of the attention score 𝑂
with the shape (2, 8, 64). Then, the matrix is flattened to the
shape (1, 1024) for the multiplication with𝑊𝑜 .

Figure 10.(VI) depicts the output projection and first resid-
ual path. After the attention score computation, each of the
four chips in the same column now holds the same, flattened
attention score for 16 heads. The𝑊𝑜 matrix is partitioned
row-wise across the column group chips, with each column
assigned a weight shape of (1024, 2880) and each individual
chip’s HN array receiving a (1024, 720). Each chip generates
a partial-𝑂 of shape (1, 720). These partial-𝑂s are combined
via one row-wise all-reduce and one column-wise all-gather
to yield the final 𝑋𝑜 of shape (1, 2880) in all chips.

A.2 Feed-Forward Network with MoE
Figure 10.(VII) shows the experts router stage. After the
Group Query Attention computation, all chips in HNLPU
contain the complete (1, 2880) 𝑋𝑜 vector. These values are
passed through RMSNorm before entering the routing layer.

As𝑊rout only accounts for about 0.01% of the total weights,
we replicated a copy of the router weights on all 16 chips
to avoid inter-chip data exchange. After the computation of
𝑋norm ·𝑊rout, each chip obtains complete 𝑋rout. Next, top-k
and softmax operations are performed. The top-k result is
used to generate a masked input tensor, 𝑋 , with a shape of
(128, 1, 2880). In this tensor, the values for the top-k experts
are set to those of 𝑋norm, while all others are set to zero.
Additionally, the top-k results are normalized with a softmax
to obtain the expert weights.
Figure 10.(VIII) shows the up- and gate-projection stage.

Following the top-k masking, each chip processes its masked
𝑋mask tensor, which consists of 8 vectors, each of shape
(1, 2880). Among the 128 𝑋mask (1, 2880) vectors in all chips,
only 𝑘 are non-zero. The weight of𝑊up is sliced into 16 tiles,
with the shape of (8, 2880, 2880) for each chip. Then, the
local 8 vectors of 𝑋mask are multiplied with the sliced weight
𝑊up of eight experts. The 16 chips produce a total 𝑋up tensor
of shape (128, 1, 2880). Because each chip stores the com-
plete weight matrices for all experts, this step requires no
inter-chip data communication. The gate projection follows
the same partitioning: 𝑋mask is multiplied by the correspond-
ing 𝑊gate slice, yielding an 𝑋𝐺 , (128, 1, 2880) in total and
(8, 1, 2880) for each chip. Applying the SwiGLU activation
to 𝑋𝐺 and 𝑋up, and taking the element-wise product, we get
the output 𝑋𝑡 for the subsequent down-projection.

Figure 10.IX shows the down-projection and second resid-
ual path. Still, 𝑋𝑡 in each chip with the shape of (8, 1, 2880)
multiplies its down weight slice𝑊down, (8, 2880, 2880), to
produce a partial𝑋down, (8, 1, 2880). Next, the expert weights,
which were obtained from the previous stage (VII), are mul-
tiplied with the corresponding expert outputs to get the
weighted output for each expert. Subsequently, an all-chip
all-reduce operation is performed to sum the partial results.
The shape of 𝑋down in all chips is from (128, 1, 2880) to
(1, 2880). The summed 𝑋down is then added to 𝑋𝑜 to yield
the final layer output 𝑌 (1, 2880).

B Notes to Table 3.
1Deployment scale. We define the "Low Volume" scenario
as a single HNLPU system. The "High Volume" scenario
targets OpenAI-scale throughput (∼100M tokens/s [63, 64]),
corresponding to a 50-systemHNLPU cluster. To ensure a fair
TCO comparison, we normalize hardware counts based on
equivalent inference throughput. Under a high-concurrency
workload (1K prefill/1K decode, concurrency 50), the average
throughput per H100 GPU in a distributed setting is 1.08 K
tokens/s [15]. Consequently, given the HNLPU’s ∼2M to-
kens/s throughput under the same workload configuration,
we equate one HNLPU system to approximately 2,000 H100
GPUs.
2Facility power modeling / PUE. Facility-level PUE is
assumed to be 1.4, consistent with modern hyperscale AI
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datacenters [19].

Table 5. HNLPU Cost Analysis.

- Cost ($)

Recurring Cost ($ / chip)
Wafer 629
Package & Test 111 ∼ 185
HBM 1,920 ∼ 3,840
System Integration 1,900 ∼ 3,800

Non-recurring Cost ($)
Photomask

Homogeneous Mask 13.85M ∼ 27.69M
Metal-Embedding Mask 18.46M ∼ 36.92M

Design & Development
Architecture 1.87M ∼ 3.74M
Verification 9.97M ∼ 19.93M
Physical 4.80M ∼ 14.41M
IP 10.23M ∼ 20.46M

Total Cost Scenarios ($)
Initial Build (Full NRE + Recurring)

1-HNLPU 59.25M ∼ 123.3M
50-HNLPU 62.83M ∼ 129.9M

Re-spin (Metal-Embedding Mask + Recurring)
1-HNLPU 18.53M ∼ 37.06M
50-HNLPU 22.11M ∼ 43.68M

3Node price of H100 and HNLPU.For H100 price, each
NVIDIA HGX H100 platform (8 GPUs/node) costs about
$ 320,000, including server, intra-node networking and 3-year
hardware warranty [73, 80]. For HNLPU, we break down the
node cost in Table 3 into recurring cost and non-recurring
engineering (NRE) cost in Table 5.

Regarding recurring cost, we first estimate the silicon cost.
Assuming a cost of $ 16,988 for a 300mm 5 nm wafer [7, 43],
Murphy’s model (𝐷0 = 0.11 def/cm2) predicts a 43% yield
(∼27 of 62 dies), resulting in ≈ $629 per good die. Second,
packaging and testing are estimated at $3,000–$5,000 per
wafer to account for 2.5D integration complexity [68], re-
sulting in an amortized cost of $111–$185 per chip. Third,
given an HBM cost of $10–$20/GB [21, 24], the 8-stack con-
figuration (24GB per stack) amounts to $1,920–$3,840 per
HNLPUmodule. Finally, we include system integration costs,
covering the chassis, motherboard, cooling, power, and CXL
interconnects; these figures align with per-chip costs from
established commercial platforms [70].
Regarding one-time costs, we distinguish between pho-

tomask NRE and design & development expenses. First, we
model the photomask NRE using a normalized cost model
based on lithography complexity for the 5 nm technology
node. To account for the disparity in manufacturing costs, we
assign a cost weighting factor of 6× to EUV reticles relative
to standard 193i DUV reticles [75]. Given a typical 5 nm layer
stack comprising 12 EUV and 58 DUV layers [4, 40, 60, 82],
the total mask set value corresponds to 58 + (12 × 6) = 130

normalized DUV units. In HNLPU architecture, the metal-
embedding configuration requires 10 DUV reticles (VIA7,
M8 Mandrel, M8 Cut, VIA8, M9 Mandrel, M9 Cut, VIA9, M10,
VIA10, M11); consequently, this variable portion accounts for
7.7% (10/130) of the full mask set, while the remaining 92.3%
represents the homogeneous mask cost shared across all vari-
ants. Anchoring the absolute 5 nm mask set cost to a range
of $ 15M (optimistic) to $ 30M (pessimistic) [30, 42, 69], we
derive a shared homogeneous mask cost of $ 13.85–$ 27.69M.
The metal-embedding cost is estimated at $ 1.15–$ 2.31M
per variant, amounting to $ 18.46–$ 36.92M in total for 16
chips. Second, for HNLPU design and development costs,
we derive our estimates from internal engineering data and
design experience.
4Data center infrastructure. We consider two primary
capital expenditures: inter-node networking and facility con-
struction. For the H100 cluster baseline, we assume a stan-
dard three-tier non-blocking Fat-Tree topology. In terms
of hardware composition, the network fabric is built using
NVIDIA ConnectX-7 [16] network interface cards (NICs)
and Quantum-2 (QM9700) InfiniBand switches [27], inter-
connected with corresponding optical transceivers [26]. Ac-
counting for the NICs, switches, and cabling costs, the es-
timated network equipment capital expenditure is approxi-
mately $45 K per node. The facility construction cost is mod-
eled as $12M per MW of critical IT load [17]. For HNLPU,
we scale the networking cost based on the number of chips,
while the construction cost is scaled based on total power
consumption.
5Re-spin cost. For H100, changing the model does not re-
quire a re-spin; therefore, this cost is zero. For HNLPU, the
re-spin cost comprises the Non-Recurring cost for the metal-
embedding mask, plus the recurring costs for fabricating,
packaging, and testing, as listed in Table 5.
6Electricity. The electricity cost is calculated based on the
industrial electricity price of $0.095/kWh, representative of
major U.S. data center hubs [81].
7Maintenance & Support. For H100 clusters, Maintenance
& Support includes software licensing and hardware mainte-
nance. Software license fees are calculated based on NVIDIA
AI Enterprise pricing guidelines [61]. Hardware maintenance
is conservatively estimated as 5% of hardware CapEx per
year [45, 72]. For HNLPU, wemodel this cost by provisioning
spare nodes: one for the low-volume scenario and five for
the high-volume scenario.
8CO2 emission. Our carbon emission analysis incorporates
both embodied emissions from hardware manufacturing and
operational emissions from energy consumption. We esti-
mate the manufacturing emission for a single H100 card or
an HNLPU module at 124.9 kgCO2e [50, 99]. The grid carbon
intensity is assumed to be 0.38 kgCO2e per kWh [34].
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