
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Machine Learning Computers with Fractal von
Neumann Architecture

Yongwei Zhao, Zhe Fan, Zidong Du, Member, IEEE, Tian Zhi, Ling Li, Qi Guo Member, IEEE, Shaoli Liu,
Zhiwei Xu Senior Member, IEEE, Tianshi Chen and Yunji Chen Senior Member, IEEE

Abstract—Machine learning techniques are pervasive tools for emerging commercial applications and many dedicated machine learning
computers on different scales have been deployed in embedded devices, servers, and data centers. Currently, most machine learning
computer architectures still focus on optimizing performance and energy efficiency instead of programming productivity. However, with the
fast development in silicon technology, programming productivity, including programming itself and software stack development, becomes
the vital reason instead of performance and power efficiency that hinders the application of machine learning computers.
In this paper, we propose Cambricon-F, which is a series of homogeneous, sequential, multi-layer, layer-similar, machine learning
computers with same ISA. A Cambricon-F machine has a fractal von Neumann architecture to iteratively manage its components: it is
with von Neumann architecture and its processing components (sub-nodes) are still Cambricon-F machines with von Neumann
architecture and the same ISA. Since different Cambricon-F instances with different scales can share the same software stack on their
common ISA, Cambricon-Fs can significantly improve the programming productivity. Moreover, we address four major challenges in
Cambricon-F architecture design, which allow Cambricon-F to achieve a high efficiency. We implement two Cambricon-F instances at
different scales, i.e., Cambricon-F100 and Cambricon-F1. Compared to GPU based machines (DGX-1 and 1080Ti), Cambricon-F
instances achieve 2.82x, 5.14x better performance, 8.37x, 11.39x better efficiency on average, with 74.5%, 93.8% smaller area costs,
respectively. We further propose Cambricon-FR, which enhances the Cambricon-F machine learning computers to flexibly and efficiently
support all the fractal operations with a reconfigurable fractal instruction set architecture. Compared to the Cambricon-F instances,
Cambricon-FR machines achieve 1.96x, 2.49x better performance on average. Most importantly, Cambricon-FR computers are able to
save the code length with a factor of 5.83, thus significantly improving the programming productivity.

Index Terms—Machine Learning, Architecture, Neural Networks, Programming Efficiency

F

1 INTRODUCTION

M ACHINE learning techniques are pervasive tools for emerg-
ing commercial applications, including image recognition

[1], [2], [3], speech recognition [4], [5], face cognition [6], [7],
video analysis [8], [9], advertisement recommendation [10], and
games [11], [12]. In recent years, many dedicated machine learning
computers on different scales have been deployed in embedded
devices, servers, and data centers. For example, Huawei Mate10
and P20 cellphones integrated Cambricon-1A machine learning
processor core [13]. Apple iPhone X cellphones also integrated a
machine learning subsystem to identify faces of users [14]. NVIDIA
produced DGX-1 and DGX-2 machine learning computers based
on NVIDIA GPU [15], [16]. Google announced a machine learning
computer with 100 Petaflops peak performance based on TPU-3
chips [17]. Recently, IBM announced Summit, which is a machine
learning supercomputer with 9216 POWER9 CPUs and 27648

• Yongwei Zhao, Zhe Fan, Zidong Du, Tian Zhi, Qi Guo, Shaoli Liu,
Zhiwei Xu, Tianshi Chen and Yunji Chen are with State Key Laboratory
of Computer Architecture, Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, 100190. Yongwei Zhao, Zhe Fan, Zhiwei Xu
and YunjiChen are also with University of Chinese Academy of Sciences,
Beijing, 100049. Yongwei Zhao, Zhe Fan, Zidong Du, Tian Zhi, Qi Guo,
Shaoli Liu, and Tianshi Chen are also with Cambricon Technologies.
Ling Li is with Institute of Software, Chinese Academy of Sciences, Beijing,
100190. Yunji Chen is also with Institute of Brain-Intelligence Technology,
Zhangjiang Laboratory (BIT, ZJLab), Shanghai Research Center for Brian
Science and Brain-Inspired Intelligence (Shanghai Brain/AI), CAS Center
for Excellence in Brain Science and Intelligence Technology (CEBSIT).
Zidong Du is the corresponding author.
Emails: {zhaoyongwei, fanzhe, duzidong, guoqi, liushaoli, zxu, chentianshi,
cyj}@ict.ac.cn; liling@iscas.ac.cn.

NVIDIA V100 GPUs [18].
Currently, most machine learning computer architectures still

focus on optimizing performance and energy efficiency instead of
programming productivity. In Figure 1, we try our best effort to
summarize the power efficiencies of the most efficient machine
learning accelerators proposed in the very year from 2012 to
2018. Obviously, the power efficiency keeps increasing at a
dramatic speed, i.e., 3.2x each year. Neuflow achieves 230GOPS/W
with IBM 45 nm technology in 2012 [19]. DianNao, a deep
neural network accelerator proposed in 2014, improves the power
efficiency by a factor of 4.05x. And in 2018, Conv-RAM achieves
28.1TOPS/W [20], i.e., 1213x improvement compared with those
in 2012.

While energy efficiency of machine learning computers keeps
increasing rapidly, programming productivity—including pro-
gramming itself and software stack development—becomes the
vital reason that hinders the deployment of machine learning
techniques. Even if a machine learning computer has a high peak
performance/energy efficiency, high-quality program and software
stack are still essential to fulfill the actual performance and energy
consumption requirements of machine learning applications.

Programming productivity is further compromised by different
programming interfaces in a single machine learning computer. As
illustrated in Figure 2, a traditional machine learning computer
often has many heterogeneous parallel components organized in
a hierarchical way. While programming heterogeneous systems
and parallel systems are already notoriously difficult, each layer in
a traditional hierarchical machine learning computer may have a
different programming interface, which further exacerbates the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

P
ow

er
 E

ffi
ci

en
cy

 (
G

O
P

S
/W

)

2012 2013 2014 2015 2016 2017 2018

10^2

10^3

10^4

10^5

10^6

Fig. 1. Power efficiency of recent proposed machine learning accelera-
tors [19], [20], [21], [22], [23], [24], [25].

CPU

GPUs

CPU

GPUs
PCIE PCIE

NVlink

cuDN
N

 Library
API Deep Learning Applications

Deep Learning Fram
ew

orks

PCIE
Driver

CU
DA Runtim

e

CU
DA Driver

CPU
 Runtim

e

CPU
 ISA

Drivers

PTX

Fig. 2. A typical machine learning computer architecture.

programming challenge. For example, a GPU-based machine
learning computer, such as NVIDIA DGX-2 [16], contains het-
erogeneous chips, i.e., 2 CPUs (24 cores per CPU) and 16 V100
GPUs. Except that programming multiple GPUs requires manual
work based on MPI or NCCL, programming a single GPU chip
needs to use the CUDA language to manipulate thousands of
GPU threads; programming CPUs needs to write C/C++ with
parallel API support for tens of CPU threads. Moreover, even the
software stack inside a single GPU is also quite complicated, which
includes CUDA PTX for programming grids/blocks/threads in the
GPU, and microcode for programming a stream processor [26].
Considering there have been so many different machine learning
computers, the industry needs to put huge efforts on porting system
software (including but not limited to libraries, algorithm primitives,
programming frameworks, assemblers, and compiler backends) to
machine learning computers. For instance, just in the Tensorflow
alone, there are thousands of operators [27], and optimizing an
operator (e.g., convolution) on a certain GPU can cost several
months for a skilled developer. Porting an operator to a multi-
GPU computer could be even more time-consuming. HuaWei
and Cambricon have put hundreds of software developers to port
programming frameworks to the machine learning subsystem in
Mate10 cellphone [28].

In a nutshell, the programming productivity is greatly reduced
by the heterogeneous, parallel, and layer-different nature of
machine learning computer. Hence, we claim that an ideal computer
for programmer should be homogeneous, sequential, and layer-
similar, which allows simple sequential programming for machine
learning system software and applications. Moreover, if all machine
learning computers (even with extremely different scales) have
the same ISA, then the burden of programmers can be further
alleviated, since they do not need to implement and port machine
learning system software again and again. Here the question is: Is
it possible to develop a series of homogeneous, sequential, layer-

Accelerator Multi-core Multi-processor Multi-chip

Decoder

S
to
ra
g
e

Function
unit

Decoder

S
to
ra
g
e

Function
unit

Decoder

S
to
ra
g
e

Function
unit

Decoder

S
to
ra
g
e

Function
unit

Fig. 3. Top: A fractal graph example: Sierpinski carpet [30]. The graph is
subdividing itself into smaller copies and continuing recursively. Botttom:
Fractal computers, analogy to Sierpinski carpet.

similar, machine learning computers with the same ISA, which still
have high efficiency?

To answer this question, we propose Cambricon-F, which
can achieve easy-programming and high-efficiency for machine
learning simultaneously. The key insight of Cambricon-F is to
organize the components of a computer in a fractal way. Originally,
the word “fractal” in math is used to describe complicated
objects which exhibit similar patterns at different scales, known as
expanding symmetry or evolving symmetry [29]. Without diving
into the controversy in math, we borrow the concept of fractal
for iterative decomposition with self-similar patterns to any scale,
see Figure 3 Top. Extended to computer domain, Cambricon-F
is a series of homogeneous, sequential, multi-layer, layer-similar,
machine learning computers with the same ISA. A Cambricon-
F machine has a fractal von Neumann architecture to iteratively
manage its components: it is with von Neumann architecture and its
processing components (sub-nodes) are still Cambricon-F machines
with von Neumann architecture and the same ISA. It features the
fractal computing that iteratively decomposes an instruction on it
into several instructions on low-layer sub-nodes. Hence, Cambricon-
Fs with different scales can be used for different scenarios from
embedded systems, desktops, data centers to supercomputers. As
shown Figure 3, a single-core accelerator, multi-core chip, multi-
chip server, and multi-server system can be architected in a fractal
way with the same ISA, for different scenarios in different scales.
Thus, programmers only need to consider one sequential ISA to run
the same code on any of such devices. Furthermore, we propose
a reconfigurable FISA for fractal machine, which allows user-
defined fractal instructions and user-specified executing procedures,
to flexibly and efficiently support all the fractal operations. We
further propose the Cambricon-FR machine learning computers to
architectural support the reconfigurable FISA.

In this paper, we made the following major contributions.
• We thoroughly find that common machine learning primitives

can be considered as fractal operations, which can be decom-
posed into several smaller self-similar operations iteratively.

• We proposed Cambricon-F, which is a series of homogeneous,
sequential, multi-layer, layer-similar, machine learning comput-
ers with fractal von Neumann architecture and same ISA. By
providing a sequential view to programmers, Cambricon-F can
achieve easy-programming and high-efficiency simultaneously.

• We summarize the four challenges in mapping different types

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

of fractal operations onto Cambricon-F, including reduction
operation mapping, fractal data management, communication
congestion, and inter-instruction optimization. We propose a
series of techniques to address the four major challenges.

• We design and implement two Cambricon-F instances at differ-
ent scale down to layout level and evaluate these Cambricon-F
instances with quantitative experimental results. Compared to
GPU based machines, with higher programming productivity
(due to the same sequential ISA), Cambricon-F instances are
also able to achieve better performance and efficiency.

• We analyze the ineffectiveness in FISA and propose Cambricon-
FR, which leverages a reconfigurable fractal instruction set
architecture to efficiently and flexibly support all fractal opera-
tions.

• We evaluate two Cambricon-FR instances, i.e., Cambricon-FR1
and Cambricon-FR100. Compared to GPU based machines,
Cambricon-FR machines achieve 34.48x, 25.69x better perfor-
mance on average. Most importantly, Cambricon-FR computers
is able to save the code length with a factor of 5.83, thus
significantly improving the programming productivity.

2 FRACTAL OPERATION AND MACHINE LEARNING

In this section, we first analyze common machine learning tech-
niques by decomposing them into computing primitives. Then we
define the fractal operation, analyze three types of fractal operation
with different computing dependencies, and demonstrate that all
common machine learning computing primitives fall into the three
types of fractal operation. We finally present the challenges in
designing a fractal architecture that can effectively process all three
types of fractal operations.

2.1 Machine Learning
Machine Learning Techniques. Machine learning techniques
are usually computation&memory intensive and diverse in many
aspects, such as processing flow, learning style, and training
methodology. Fortunately, they are highly paralleled at different
levels, and thus can be accelerated with heterogeneous machine
learning computers, which equip dedicated devices, including
GPU [31], [32], [33], FPGA [34], [35], [36], and even ASIC
chips [23], [37], [38], [39], [40]. Here, we first decompose these
techniques into computing primitives, then illustrate the mapping
to fraction computing form.

Computing primitives. We select six representative techniques
and decompose the CPU execution time with typical dataset into
their common primitives, see Table 1. Specifically, for the popular-
ity of deep learning, we select the famous AlexNet [3] running with
ImageNet [41] to represent convolutional neural networks (CNNs),
a 3-layer multi-layer perceptron (MLP) to deep neural networks

TABLE 1
Decomposing execution times of typical machine learning techniques

into common primitives (IP: inner production; CONV: convolution; POOL:
pooling; MMM: matrix multiplying matrix; ELTW: element-wise operation;

SORT: sorting; COUNT: counting).

ML Primitives

IP CONV POOL MMM ELTW SORT COUNT

CNN - 94.7% 0.18% 5.02% 0.12% -
DNN - - - 99.9% 0.11% - -
k-Means 90.8% - 0.116% - 9.08% 0.178% 0.012%
k-NN 99.6% - - - - 0.432% -
SVM 99.3% - 0.190% - 0.507% - -
LVQ 39.9% - 0.254% - 59.8% - -

+

+ +

x

y

z

x x
y y

yA yB
Z

xA xB

A

A

ZA

B

B

B

xA xB
y

y y
xA xBxb xa

ZA ZB

*

* *

+

xA xB
yA yB

...ZA ZB
Z

xA
yA yB

xB

.

. .

(a) vector addition (b) 1-D convolution (c) Inner production

Fig. 4. Fractal operation dependency: (a) independent; (b) input depen-
dent; (c) output dependent.

(DNNs). Others are k-means, k-NN, support vector machine (SVM),
and learning vector quantization (LVQ). In line with previous
works [23], [42], [43], [44], we decompose machine learning
techniques into matrix and vector based operations. We aggregate
operations such as vector multiplying matrix and matrix multiplying
vector into matrix multiplying matrix, operations such as matrix
adding/subtracting matrix, matrix multiplying scalar, and vector
elementary arithmetics into element-wise operation. Hence we get
seven major computing primitives after decomposition, including
convolution (CONV), pooling (POOL), matrix multiplying matrix
(MMM), element-wise operation (ELTW), sorting (SORT), and
counting (COUNT). We still have CONV, POOL primitives instead
of only using MMM for the convenience of analyzing and mapping
emerging important deep learning algorithms. Note that IP is
actually vector-multiplying-vector, which can also represent the
fully connected layer in deep networks. It can be observed that
these seven computing primitives characterize machine learning
techniques mainly.

2.2 Fractal operation

Fractal operation. We say that an operation f (·) with an input
tensor X is a fractal operation if there exists an operation g(·)
allowing

f (X) = g(f (XA), f (XB), ...) (1)

where f (·) is the target operator, g(·) is the retrieving operator, X
represents all operands of f (·), XA,XB, ... are the subsets of X.
Based on the relationship among XA,XB... and X, we can divide
the fractal operations into three categories: independent, input
dependent, and output dependent.
• If XA,XB... are independent, non-overlapped to each other, each

subset is independent that they can be computed locally, i.e.,
independent. In Figure 4 (a), we use a vector adding operation
as an example to present independent fractal operation. For
clear illustration, we split X into two operands, i.e., ~x,~y—
two input vectors for adding. As ~x and ~y can be divided into
two independent pieces (~xA, ~xB and ~yA, ~yB), two vector adding
operations can be achieved independently, i.e., ~zA = ~xA + ~yA
and ~zB = ~xB + ~yB. Each piece is working on independent part
of the inputs and the final outputs just need assemble with
no additional operation, i.e., ~z = [~zA, ~zB]. Thus, g(·) is linear
function g(x) = x.

• If XA,XB... are overlapped, each subset requires extra copies
of some inputs that leads input redundancy in the fractal
operation, i.e., input dependent. For example, a one-dimensional
convolution as shown in Figure 4 (b). Similarly, we use ~x,~y
to represent two operands and ~x = [~xA, ~xB]. We still divide the
operation into two pieces, where each piece is working on
independent part of outputs, i.e.,~z = [~zA, ~zB] =~x?~y = [~xA, ~xB]?~y.
However, these two operations have overlapped inputs, where
parts of ~xA and ~xB (~xa, ~xb, respectively) are required additionally,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Input feature maps Input feature mapsOutput feature maps Output feature maps

C
h
a
n

n
e
l

Height
Width

Fig. 5. CONV decomposition. Left: dividing in channel dimension. Right:
dividing in height dimension.

i.e., ~zA = [~xA, ~xb] ?~y and ~zB = [~xa, ~xB] ?~y. But, there is still no
additional operation for final outputs, i.e., g(x) = x.

• In some cases, g(·) is introduced to reduce the results of pieces
into the final results, i.e., output dependent. For example, as
shown in Figure 4 (c), an inner production operation (z =
~x ·~y) can be divided into smaller pieces where each piece still
performs an inner production operation (zA = ~xA · ~yA and zB =
~xB ·~yB); but to get the final results, the results of those pieces will
be summed up, i.e., z = zA + zB. Thus, g(·) is the sum operation,
g(·) = sum(·). Note that a fractal operation can be both output
dependent and input dependent.

2.3 Fractal computing for machine learning
We present how machine learning computing primitives can be
accomplished in a fractal form (i.e., fractal computing) and analyze
the challenges for designing corresponding architecture. Based on
the above analysis, we can classify all machine learning primitives
into three categories, see Table 2. Note that different decomposition
can lead to different dependence. For example, CONV can divide
the input features maps in channel dimension, where the final
outputs rely on results from each divided pieces (thus output
dependent), as shown in Figure 5 (left); CONV can divide the input
feature maps in height or width dimension, where each part of
the output results only need inputs with some overlaps (thus input
dependent), as shown in Figure 5 (right).

More importantly, to effectively process fractal operations,
fractal architecture should be built hierarchically with a tree-like
topology where several son nodes compose a father node iteratively,
see example Cambricon-F architecture shown in Figure 3. Obvi-
ously, independent operations are easily mapped to such fractal
architecture and computed fractally. Also, input dependent can be
transformed to independent with input redundancy. For the 1D
convolution operation in Figure 4 (b), each part only needs some
more inputs from X then the fractal operation is independent. In
Table 2, we present the analysis of decomposition of computing
primitives in a fractal form. Additionally, we present the data
redundancy if using independent decomposition instead of input
dependent. For the output dependency operations, g(·) is inevitable
no matter whether inputs are dependent or independent. Thus, it
is totally feasible to perform machine learning computations in

TABLE 2
Computing primitives analysis.

Primitives Decomposition Dependency g(·) Data Redundancy

IP Length-Wise Output Add -
CONV Feature-Wise Output Add -
CONV Batch-Wise Input - Weight
CONV Spatial Input - Weight, Overlapped
POOL Feature-Wise Independent - -
POOL Spatial Input - Overlapped
MMM Left,Vertical Output Add -
MMM Right,Vertical Input - Left Matrix
ELTW Any Independent - -
SORT Any Output Merge -
COUNT Any Output Add -

Mem

LFU

LFU

...

... ...

...

...

fractal instructions

local
instructions

FFU FFU

FFU FFU

Mem

LFU

LFU

...

... ...

...

...

fractal instructions

local
instructions

FFU FFU

FFU FFU

Level i Level i+1

Controller
Mem

Local instructions

Level 0 (top)

ControllerController

FU

Mem
fractcal instructions

Level N (leaf node)

...FFU FFUFFU

Controller

... ...

Fig. 6. A typical fractal von Neumann architecture: level 0 (top
node)...level i node and its son node in level i+1...level N (leaf node).

a fractal form. But for designing fractal architecture, we must
solve the following challenges related to extra data redundancy and
reduction operation g(·):
• Reduction Operation. Reduction operation g(·) in output

dependent operations are not naturally fitted in fractal operation
as independent and input dependent operations. Thus, for
efficiently processing g(·), we introduce lightweight computing
unit (i.e., LFU) in each node locally. By aggregating data in
son FFUs into a father LFU iteratively, such operations can
be processed efficiently in father LFUs in Cambricon-F. We
introduce that in detail in later Section 3.1, 3.2, 3.3.

• Data Redundancy. In fractal operation computing, input de-
pendent operations can be computed as independent operations
but with data redundancy. For that, the memory is hierarchically
organized and the memory allocation leveraging the separable
time order (Section 3.5).

• Communication. Communication among different nodes would
lead to enormous wire connections and consequently to be
costly in terms of area, latency, and energy. For that, from our
analysis, even the output dependent operations only require
data movements from leaf to root node for reduction operations.
Thus, it is unnecessary to have communication between any
pair of nodes. In Cambricon-F, we organize the machine
learning computations iteratively in a fractal form and limit
the connections to father-son nodes only, thus reducing the wire
congestion (Section 3.3, 3.4).

In summary, after addressing the above concerns, the fractal
architecture would be able to achieve at least comparable efficiency
with traditional architecture for machine learning applications.

3 CAMBRICON-F COMPUTERS

In this section, we present the Cambricon-F computers from the
architects’ perspective, including overall architecture, instruction
set architecture, decoder, pipeline, memory hierarchy, and imple-
mentation details.
3.1 Fractal von Neumann Architecture
A Cambricon-F machine has a fractal von Neumann architecture,
which is hierarchical architecture built iteratively, as illustrated in
Figure 6. At the top level (root node), programmers should only
learn a simple von Neumann architecture that contains a memory
component (Mem), a functional unit (FU), and a controller with a
decoder inside to decode instructions. In the middle levels, each

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

node is still with von Neumann architecture, containing a controller
(it can be either hardware or software), a memory component
(Mem), several processing units including local functional units
(LFU) and several fractal functional units (FFU). Each FFU is a
son node (Level i+1) of the current node (Level i) and has the same
ISA and similar architecture. At the bottom level, each leaf node
is an accelerator that finishes the most part of the computation.
Therefore, a Cambricon-F machine is built with a fractal von
Neumann architecture to iteratively manage its components.

The ISA of Cambricon-F is Fractal Instruction Set Architecture
(FISA), where each fractal operation can be performed with one
or more FISA instructions. FISA includes two different kinds of
instructions: local instructions and fractal instructions. For a local
instruction, the controller can directly issue it to an LFU, and the
LFU will complete the local instruction. For a fractal instruction,
the controller will translate into several instruction segments, where
each instruction segment is solved by an FFU. Hence, programming
Cambricon-F only needs to consider a single sequential ISA, while
the heterogeneity can be implicitly solved through the collaboration
between LFUs and FFUs, and the parallelism can be implicitly
solved through the parallelism between FFUs. Since an Cambricon-
F computer and its all descendant Cambricon-Fs/FFUs have the
same ISA, a programmer does not need to consider the difference
between different layers of a machine learning computer. Moreover,
different Cambricon-F computers with different scales (either a
machine learning supercomputer or a small machine learning
subsystem in a cellphone) can use the same ISA, which allows a
same binary code to run on platforms from cloud to end.

To efficiently process fractal operations, Cambricon-F adopts
a hierarchical memory system. Cambricon-F manages the storage
in two types: global memory and local memory. At the top level,
Cambricon-F contains a larger memory for buffering input data,
i.e., the global memory, which is also visible to programmers. Each
node in Cambricon-F contains a local storage to buffer the data,
which will become a “global memory“ shared among its son nodes.
In such a manner, we manage all the memory in Cambricon-F
hierarchically.
3.2 Instruction Set Architecture

Cambricon-F leverages a special instruction set architecture to
achieve the fractal computing, i.e., Fractal Instruction Set Architec-
ture (FISA). Formally, we give the definitions of FISA instruction
and FISA:
• FISA instruction. A FISA instruction, I, is a 3-tuple 〈O,P ,G〉,

where O is an operation, P is a finite set of operands, G is
granularity indicator.

• Fractal instruction. A FISA instruction, I 〈O,P ,G〉, is a
fractal instruction, iff there exists a set of scale indicators
G ′1,G ′2, . . . ,G ′n (G ′i � G, � is the partial order defined on scale
indicators) that I can be achieved through computing with
I′1(G ′1), I′2(G ′2), . . . , I′n(G ′n) and other FISA instructions iteratively.

• An ISA set is a FISA set, iff it contains at least one fractal FISA
instruction.

• A machine M running FISA set is a fractal machine, iff there
exists at least one fractal instruction that is fractal-executed on
M.
The FISA design for Cambricon-F stays at a relatively higher

level so as to improve the programming productivity with same
sequential code, as in Table 3 where we show a subset of FISA.
Primitives such as convolution and sorting can be directly expressed
with FISA instructions. Operations of low operation intensity (e.g.

IQ SD

TTT

SQ

CMR

DD

TTT

RC

PD

DMAC DMA

FFUs

LFUs

SD (Async) ID LD EX RD WB

Fig. 7. Pipeline partition in an Cambricon-F node.

Element-Wise Operations) are also supported in FISA for better
programming versatility. Such instructions will be considered as a
reduction operation by Cambricon-F and tend to execute on LFUs.
3.3 Controller
The controller exists in each node in a Cambricon-F, serving
to manage its son nodes working in a fractal manner. From a
functionality perspective, the controller consists of three phases: a
sequential decomposition phase, a demotion phase, and a parallel
decomposition phase. Several specific modules are thusly designed
in pipeline stages to accomplish the transformation procedure from
input instructions to sub-level nodes, including FFUs and LFUs,
see Figure 7. Briefly, in sequential decomposition phase, input
instructions are loaded into Inst Queue (IQ), which is later fetched
by Sequential decomposer (SD). SD decomposes into a sequential
executed instruction list regarding the hardware limitation. In
demotion phase, reformed instructions in the list are decoded
by Demotion Decoder (DD) into sub-level instructions. In parallel
decomposition phase, sub-level instructions for fractal computing
will be passed to FFUs through a Parallel decomposer (PD), for
local computations to LFUs through a Reduction Controller (RC),
for data movements to DMA Controller (DMAC) to access memory.

Particularly, Demotion Decoder, the key component in con-
troller, decode input upper instructions to sub-level instructions
to be fractally computed. For each sub-level instruction SQ, DD
checks operand dependencies to instructions running in the pipeline.
DD will stall the pipeline if a read-after-write (RAW) dependency
exists. DD also checks the storage requirements of operands,
allocates memory space locally, and generates DMA instructions.
DMA instructions will be sent to DMAC for data exchange between
local memory and ”shared memory” in upper level, e.g., loading
sources or writing back results. DD then binds the new local
addresses to operands in sub-level instructions which later sent to
PD for fractal computing, RC for reduction operations.

TABLE 3
Examples of Cambricon-F Instructions

Type Operation Name

Deep
Learning

Convolution CV2D, CV3D
Pooling MAX2D, MIN2D, AVG2D
LRN [3] LRN

Linear
Algebra

Matrix Multiplication MATMUL
Euclidian Distance EUCLIDIAN1D

Sort Merge Sort SORT1D

Count Count COUNT1D

Reduction

Binary Element-wise ADD1D, SUB1D, MUL1D
Unary Element-wise ACT1D
Horizontal HSUM1D, HPROD1D
Merge MERGE1D

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

ID

LD

EX

RD

WB

Level i

Time

ID

LD

EX

RD

WB

Level i+1

Time

Fig. 8. Fractal Pipeline of FISA.

Parallel decomposer subdivides sub-level instructions into
multiple FISA instructions, i.e., fractal instructions, that are
assigned FFUs. FFUs process fractal FISA instructions during
the EX pipeline stage in parallel.

Reduction Controller aims to perform the reduction operation
in output dependent fractal operations normally. However, reduction
operation can be assigned to FFUs instead of LFUs for high
efficiency, when RC predicts significantly reduced execution
time on FFUs or founds LFUs unavailable. In cases, Reduction
Controller send a commission to PD by writing the operation
into Commission Register (CMR). PD will check if there is a
commission in the register at the start of each FISA cycle, and
append the commissioned operation.

3.4 Pipelining

Normally, Cambricon-F performs each instruction recursively. Top
level (level 0) node decodes and sends fractal instructions to its
FFUs where each FFU repeats the decoding/sending procedure
until the leaf nodes for execution. Leaf nodes return computed
results to their father nodes and that repeats until the top node.
During such execution process, FFUs in leaf nodes, where the
heavy computation tasks are performed, are idle when its upper-
level nodes are decoding instructions recursively.

Thus, in order to increase the throughput of Cambricon-F, we
pipeline the FISA instruction execution into five stages: Instruction
Decoding (ID), Loading (LD), Execution (EX), Reduction (RD)
and Writing Back (WB), see Figure 7. Similar to pipeline in CPUs,
an issued instruction will be decoded local instructions, fractal
instructions, and DMA operations in the Controller (ID). Data
is loaded from memory to local storage for FFUs and LFUs
computation (EX stage) with DMA operations at LD stage. LFUs
will start the reduction operations at RD stage or be bypassed if
no reduction operation needed. The final or partial results will
be written to memory from local storage at WB stage. Note that
SD is executed asynchronically where SD keeps decompositing
instructions from IQ to SQ.

As each node in Cambricon-F executes its 5-stage pipeline for
its instructions, Cambricon-F will execute FISA with a recursive
pipeline. In Figure 8, we show the pipeline for a two-level
Cambricon-F. In the EX stage of level 0, FFUs run their own
pipeline, i.e., level 1 pipeline. As a result, the recursive pipeline of
FISA has utilized every component of every hierarchy at almost
any time, except the pipeline startup and emptying.

3.5 Memory Management

As each phase in the Controller may require memory allocation,
memory management is challenging and more critical to the overall
efficiency. Fortunately, we observe that memory blocks for parallel
decomposition only live in EX and sometimes RD pipeline stage,
and blocks for demotion live in the whole FISA cycle. But memory
blocks for sequential decomposition may live across multiple

Recycled 1 Recycled 2 Recycled 3 Static Even Static Odd

Fig. 9. Memory Management of Cambricon-F Controller. The memory
space is divided into 4 segments (3 recycling and 1 static), managed as
5 stacks (2 stacks in the static segment).

FISA cycles since there could be multiple sub-level instructions
decomposed from the FISA instruction.

As shown in Figure 9, memory space is always allocated
in the list order, which is consistent with the time order that
Controller requests. For the memory allocation alive for multiple
FISA instructions, i.e. those for sequential decomposition, we use
the fourth memory space (static segment) which is shared by every
pipeline stage for their different lifecycles. Memory allocation
to static segment are double-ended for parity of instructions to
avoid overlapped memory lifecycles of adjacent instructions. The
design of the allocation list significantly reduces the complexity of
memory management, and keep the space utilization efficiency.

Here, we do not manually release the allocated memory space,
where new instruction will directly refill with new data. The reason
is two-fold. First, results of instruction will be written back and
the remain inputs or intermediate results are usually useless for
later computations, as our FISA instructions work at a relatively
higher level. Second, for seldom cases that following instructions
may share the inputs/outputs, we implement a Tensor Transposition
Table (TTT) to find out data that can be forwarded or reused,
resulting in a similar behaviour as ”pipeline forwarding” in common
practices of processor pipelines.
3.6 Data consistency and coherence.
In Cambricon-F, we apply many constraints to manage the data con-
sistency and coherence problems. Since our system will decompose
the operation into smaller non-overlapped segments for son nodes
execution; thus, data may have many copies in different nodes.
However, as presented in Section 3.5, our instruction generation
will not allow write data to the read address space, thus ensuring
data consistency naturally in most of the cases. Additionally, Tensor
Transposition Table introduces the risk of data inconsistency as
it forwards data from write address space to read address space.
Instead of implementing costly consistency protocols, we set up
a validity period for each record in TTT. TTT is split into banks
as memory spaces does, where each bank only maintains the
information of its corresponding memory segment. Whenever the
segment is recycled, new data are allocated on, and old data may be
overwritten thus never safe to forward again, the TTT invalidates all
records. Thus, with such validity mechanism, the lifetime of records
won’t exceed the lifetime of the referenced data. To guarantee
the data coherence, simultaneous memory writes into the same
memory address are always prohibited. The destination addresses
of instructions assigned to each FFU will always be different.

4 PROGRAMMING AND EXECUTION

Programming. With all the effort to provide programmers with
sequential programming experiences, Cambricon-F are able to run
the same piece of code without any other work. In Figure 10, we
show a typical Cambricon-F inline assembly code using a k-Nearest
Neighbor algorithm as a driving example. The principle of FISA is
that the nodes perform their own duties and Do Not Interfere with
how the child nodes work. The programmer of Cambricon-F, which
acts as the “controller” beyond the top level node, also follows

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

k-Nearest Neighbors

int K = 5, N = 262144

tensor C[1,N], X[512,N]

tensor D[N,N], C2[N,N]

C2[:] = C[0]

calculate distance for each pair of samples

fisa euclidian1d X, X, D

tensor C3[K,N], P[K,N]

sort to find k-nearest neighbors' category

fisa sort1d D, dc, C2, C3[K,N][N,N][0,0]

population count in k categories

fisa count1d C3, P

sort to find the most popular category

fisa sort1d P, dc, C3, C[1,N][K,N][K-1,0]

Fig. 10. An Cambricon-F program of k-NN.

TaskProgrammer

Level 0

Level 1

Level 2

TaskProgrammer

Level 0

Level 1

Fig. 11. STMH execution model.

the principle. The programming of Cambricon-F has the following
characteristics:
• High level, arbitrary granularity. Each FISA instruction

is corresponding to a complete machine learning primitive.
The programmer does not interfere with how the operation
is decomposed. High-level instructions bring higher operational
intensity and help decrease data movements.

• Implicit data movement. Contrary to RISC, Cambricon-F does
not provide explicit load-store instruction to the programmer.
FISA hides the internal storage from the programmer by forcing
all operands to be external. The programmer does not interfere
with how the internal storage is used, so the program does not
need to adapt to different internal storage sizes when applied to
different Cambricon-F instances or nodes.

• Hardware transparency. Note that there is no hardware infor-
mation appeared in the code. The programmer of Cambricon-F
only dedicates on defining the computation task, and do not
interfere with the internal hardware behaviors.
For the next level nodes, the controller of the parent node

acts as a programmer. The Do-Not-Interfere principle reduced the
complexity of the programming, meanwhile, it also reduced the
complexity of the controller.

Execution on Different Cambricon-F Instances. The execu-
tion model of Cambricon-F can be summarized as Single Task,
Multiple Heritors (STMH). As shown in Figure 11, a task is
executed simultaneously on every hierarchies of Cambricon-F,
where each hierarchy see a part of the task with different granularity.
STMH defines how two adjacent hierarchies cooperate reducing
the granularity to inherit the task from the higher hierarchy to the

lower hierarchy. More specifically, the cooperating mechanics can
be decoupled to two relations: the relation with parent node, and
the relation between sibling nodes. Here, we define the paternity
relation via Sequential decomposer, and the sibling relation via
Parallel decomposer. Given the paternity and sibling relations,
and under the assumption that leaf nodes can solve the assigned
tasks directly, the execution of whole machine is clearly defined,
regardless what configuration does the Cambricon-F instance have.

5 METHODOLOGY

Benchmarks. As shown in Table 4, we use seven different
benchmarks in this paper. For the importance of deep learning,
we select VGG-16 [45], a 16-layer CNN with 138 M parameters in
total, and ResNet-152 [46], a very deep network with 152 layers,
running with ImageNet [41] dataset as representative benchmarks.
We also select four popular machine learning techniques, including
K-NN, K-MEANS, LVQ, and SVM, as representative benchmarks.
For these four machine learning techniques, we use a randomly
generated data set, which contains 262 thousand 512-dimension
samples within 128 categories, to emulate a computation-heavy
scenario. Additionally, as MATMUL is the most important operation
in the machine learning domain, we also include MATMUL running
with randomly generated 32768-order square matrices as our
benchmark.

GPUs. In this paper, we select two GPUs as our baseline, i.e.,
Nvidia DGX-1 [15] and Nvidia GeForce GTX-1080Ti. DGX-
1 is a supercomputer with eight NVIDIA Tesla V100-SXM2
GPUs, where each has a 125TeraOps/sec peak performance. The
bandwidth from the host to devices is measured as 84.24GB/s in
total. 1080Ti is a high-end graphics card with 10.6TeraOps/sec
peak performance and 484GB/s memory bandwidth. For DGX-1,
we program the benchmarks under the framework TensorFlow
1.9 [27] with GPU support (CUDA 9.0 [47] and cuDNN 7 [48]),
and optimize the computation graph via NVIDIA TensorRT 4 [48].
We use nvprof and nvidia-smi to measure its power and
memory bandwidth usage.

Cambricon-F. We build two different size Cambricon-F in-
stances that have similar characteristics as GPUs, i.e., Cambricon-
F100 and Cambricon-F1, for a fair comparison to GPUs.
Cambricon-F100 is a fractal machine learning supercomputer with
a peak performance of 956 Top/s, similar to DGX-1 (125*8=1000
Tops/s). Cambricon-F100 is a five-level architecture of Server,
Card, Chip, Fractal Multiprocessor (FMP), and Core in each level
from top to bottom, see Table 5. At the top level (L0), Cambricon-
F100 contains four Cambricon-F100 Computing Cards connected
through PCI-E 3.0, a host CPU (Intel Xeon E5-4640 v4) serving
as high-level controller and LFU, and 1TB host memory. The leaf
node (L4) is a Cambricon-F accelerator serving as a computing
Core, which has 256 KB eDRAM local storage, 16× 16 MAC

TABLE 4
Benchmarks.

Benchmark Size

VGG-16 [45] 1.38×108 params, 3.09×1010 Ops, variable batch
ResNet-152 [46] 6.03×107 params, 2.26×1010 Ops, variable batch

K-NN 262,144 samples, 512 dimensions, 128 categories
K-Means 262,144 samples, 512 dimensions, 128 categories

LVQ 262,144 samples, 512 dimensions, 128 categories
SVM 262,144 samples, 512 dimensions, 128 categories

MATMUL 32,768 orders, square matrix

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

matrix running at 1 GHz, reaching peak performance of 477 GOPs/s.
Cambricon-F1 is a Cambricon-F accelerating card at desktop scale
with a peak performance of 14.9 Top/s, similar characteristics to
1080Ti (10.6 Top/s). Cambricon-F1 has a three-level architecture of
Card, FMP, and Core in each level from top to bottom, see Table 5.
Cambricon-F1 has one FMP on-chip and that has 32 cores inside.

To obtain the hardware characteristics, we implemented the
Cambricon-F designs (up to chip level) in RTL and synthesize,
place, and route using Synopsys toolchain under TSMC 45 nm
technology. Fortunately, Cambricon-F is a fractal architecture built
iteratively, we are able to estimate the hundreds millimeter square
design using smaller pieces following bottom-up design philosophy.
Due to the extreme long hardware emulation time and large design,
we carefully build a simulator in C++ to get the performance.
For energy costs, we dump data movements from our simulator
and estimate memory costs with DESTINY [49], other parts are
estimated based on our layout characteristics.

6 EXPERIMENTAL RESULTS

We first present the main characteristics of Cambricon-F instances,
then present the performance and energy results when comparing
against GPUs and accelerators. The experimental results are shown
in Figure 12, where we adopt the Roofline Model [50] to illustrate
the efficiency and bottleneck of the systems.

Hardware Characteristics. The layout of a Core, a FMP
(same as a Cambricon-F1 Chip) and a Cambricon-F100 Chip are
shown in Figure 13. In Table 6, we present the detailed hardware
characteristics of the chip in Cambricon-F100 and Cambricon-F1.
Cambricon-F1 occupies 29.21mm2 area, consuming a power of
4.94W , where each core has an area cost of 0.43mm2, a power of
75.18mW at 45nm. Cambricon-F100, which is a 8-chip server
having 2048 cores in total, has an area of 415mm2 in total,
consuming a power of 42.87W at 45nm. It can be observed that
Cambricon-F favors large memory.

In Table 7, we also compare Cambricon-F chips with GPUs
and accelerators. It can be observed that Cambricon-F1 chip has
the highest power efficiency and area efficiency, 3.02 Tops/W and
0.51 Tops/mm2. Cambricon-F100 chip achieves the comparable
area efficiency, but slightly lower power efficiency when compared
against Google TPU [40]. While considering the entire card where
32 GB DRAM is included in each Cambricon-F Computing Card,
Cambricon-F1 has a 40.57% more peak performance, but with
45.11% power cost of 1080Ti GPU card and Cambricon-F100

TABLE 5
Specification of Cambricon-F instances.

Cambricon-F100 L0 L1 L2 L3 L4

Name Server Card Chip FMP Core
FFUs 4 2 8 32 -
LFUs 1 0 16 16 -
Local Storage 1 TB 32 GB 256 MB 8 MB 256 KB
Bandwidth (GB/s) 128 512 512 512 80
Peak Perf.(TOPs/sec) 956 238 119 14.9 0.46

Cambricon-F1 L0 L1 L2

Name Card FMP Core
FFUs 1 32 -
LFUs 0 16 -
Local Storage 32 GB 8 MB 256 KB
Bandwidth (GB/s) 512 512 80
Peak Perf.(TOPs/sec) 14.9 14.9 0.46

Computing Card has a 1.90x more peak performance with 67.34%
power cost of a V100-SXM2 GPU card.

Cambricon-F1 vs. 1080Ti. As shown in Figure 12 (a),
Cambricon-F1 has attained a 5.14x performance and 87.3% lower
traffic on average when compared to 1080Ti. An Cambricon-F1
Computing Card consumes an average of an 83.1 Watt power for
all benchmarks, and 1080Ti consumes an average of 199.9 Watt.
The attained performance of Cambricon-F1 is from 1.42x to 659x
higher than 1080Ti. Note that Cambricon-F1 has a 40.6% higher
peak performance and a 5.8% higher root bandwidth relatively to
1080Ti.

The main reason for that is because of the large on-chip
storage. While in 1080Ti, the programmable nodes under the
root memory, i.e., CUDA cores, have very limited local storage
space (96KB shared memory vs. 8MB L1 local storage); thus, the
operational intensity is bounded. The operational intensity of all
seven benchmarks on Cambricon-F1 has reached the ridge point
of the roofline, indicating that the root bandwidth will not be the
performance bottleneck of Cambricon-F1. Thus, Cambricon-F1 has
attained 57.4%-99.8%, 88.9% on average of peak performance on
all benchmarks.

Cambricon-F100 vs. DGX-1. As shown in Figure 12 (b),
Cambricon-F100 has a 51.9% higher root memory bandwidth
compared to DGX-1, while the peak performance of Cambricon-
F100 is 4.4% lower than DGX-1. For power consumption, four
Cambricon-F100 Computing Cards consume an average of 614.5
Watt at the total, and eight V100-SXM2 GPU cards consume an
average of 1986.5 Watt. Overall, Cambricon-F100 have attained
1.74x-8.58x performance, 2.82x on average, compared to DGX-1.

On deep learning tasks, Cambricon-F100 improved the opera-

TABLE 6
Cambricon-F layout characteristics.

Component Area(µm2) (%) Power(mW) (%)

CORE 426,348 75.18
Memory 201,588 (47.28%) 16.15 (21.48%)
Combinational 176,228 (41.33%) 23.74 (31.58%)
Registers 42,248 (9.91%) 27.38 (36.42%)
Others 6,284 (1.47%) 8.38 (11.14%)

CHIP
Cambricon-F1 29,206,289 4,935.32
Cambricon-F100 415,109,951 42,873.06

TABLE 7
Hardware characteristics comparison.

Chip Cam-F1 Cam-F100 1080Ti V100 DaDN [37] TPU [40]

ISA type FISA FISA SIMD SIMD VLIW CISC
Technology 45nm 45nm 16nm 12nm 28nm 28nm
Type Cam-F Cam-F GPU GPU ASIC ASIC
Memory type eDRAM eDRAM SRAM SRAM eDRAM SRAM
Memory Size 16 MB 448 MB 12.8 MB 33.5 MB 36 MB 28 MB
Peak Perf. (Tops) 14.9 119 10.6 125 5.58 92
Area (mm2) 29 415 471 815 67 (6 331)
Power (W) 4.94 42.87 - - 15.97 40
Power efficiency
(Tops/W)

3.02 2.78 - - 0.35 2.3

Area efficiency
(Tops/mm2)

0.51 0.29 0.02 0.15 0.08 0.28

Card Cam-F1 Cam-F100 1080Ti V100 DaDN TPU

Dies 1 2 1 1 - 1
DRAM size 32 GB 32 GB 11 GB 16 GB - 8 GB
Peak Perf. (Tops) 14.9 238 10.6 125 - 92
Power (W) 90.19 167.22 199.90 248.32 - -

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Cambricon-F GPU Roofline VGG-16 ResNet-152 MatMul k-NN k-Means LVQ SVM

10−1 100 101 102 103

10−2

10−1

100

101 14.014.7

14.914.111.7

8.57

14.9

9.82

5.72

2.06

0.23

0.03
0.01

0.18

Operational Intensity (Ops/byte)

T
er
a
O
p
s/
se
c

Cambricon-F1

1080Ti

(a)

101 102 103 104

100

101

102

103

430 597
559

31.4

11.4

6.7

60.1

209

282

65.2

7.75

2.52
0.83

34.6

Operational Intensity (Ops/byte)

T
er
aO

p
s/
se
c

Cambricon-F100

DGX-1

(b)

Fig. 12. Roofline Cambricon-Fs compared to GPUs. (a) Cambricon-F1 and 1080Ti. (b) Cambricon-F100 and DGX-1.

tional intensity by 37% and 33% for VGG-16 and RESNET-152,
respectively, when compared to DGX-1. The operational intensity
benefits from greater sub-problem scale, i.e. from larger batch size
used. GPU performance does not always increase with batch size,
which caused the best batch size choosing on GPU is smaller than
on Cambricon-F. The broadcasting optimization of Cambricon-F
improved operational intensity even further.

On machine learning tasks, DGX-1 achieves up to 85x higher
operation intensity when compared Cambricon-F100. This differ-
ence is caused by the implicit management of intermediate memory
in Cambricon-F. In Cambricon-F, programmers do not manipulate
on memories except the main memory explicitly, Cambricon-F
will write the intermediate result after each instruction back to the
root once the tensor transposition mechanics failed to forward
the data, which caused the traffic on root raised. For control
intensive workloads as ML tasks in the benchmark, control flow
always breaks the FISA pipeline and data forwarding, forcing the
intermediate results written back to the root. K-NN and SVM
have a relatively complete essential computation block. For K-NN,
calculating distances between each pair of samples constituted
> 95% of the total run-time, and for SVM, the kernel between
each pair of samples, which is sufficiently operation-intensive, is
calculated in each iteration. Thus, their operational intensity on
Cambricon-F is less affected. K-MEANS and LVQ are also iterative
algorithms as SVM is, but they do not have an operation-intensive
computation block in each iteration, thus their operational intensity
is more affected, which heavily limited the performance attainable.
Moreover, the significantly smaller granularities of operations on
these two benchmarks may be insufficient to hide the control latency
of Cambricon-F nodes, resulting in an even worse performance on

Fig. 13. Layout of Cambricon-Fs. Left: Leaf Core. Mid: FMP(Cambricon-
F1 Chip). Right: Cambricon-F100 Chip.

Cambricon-F100 compared to Cambricon-F1. With such a better
operational intensity, DGX-1 has still shown a significant gap
between attained performance and the roofline, since the bottleneck
of GPU system is between graphic memories and chips. For K-
MEANS and LVQ, GPU suffers from the control flow either and
showing an even worse performance.

7 CAMBRICON-FR: FRACTAL COMPUTERS WITH A
RECONFIGURABLE FISA
In this section, we propose Cambricon-FR, which enhanced the
Cambricon-F machine learning computers to flexibly and efficiently
support all the operations with a reconfigurable fractal instruction
set architecture (RFISA).
7.1 Ineffectiveness in FISA

While Cambricon-F is able to achieve high programming efficiency
with maintained higher performance and energy efficiency, it
still suffers from ineffectiveness when executing new operations
that are not covered in the FISA set. In the FISA set (c.f.,
Section 3.2), several important operations from popular machine
learning techniques are contained as FISA primitives directly for
fast and efficient implementation. But other operations that are not
FISA primitives can only be emulated through combining low-level
operations and FISA primitives, which could be very ineffective in
realization.

From the perspective of complexity, we can define two types
of ineffectiveness in Cambricon-F, i.e., computation ineffectiveness
(time complexity) and communication ineffectiveness (communi-
cation complexity). More precisely, regarding the computation
ineffective, for a fractal operation which is effective on a fractal
machine M, its obtained speedup ratio rc is irrelevant to the
operation granularity G, where the rc is defined as the ratio of
operation compute time on the leaf node of M and on the whole
machine M, i.e., rc = TM/Tlea f node. For an operation is ineffective
on a fractal machine, its achieved speedup ratio is asymptotically
related to the granularity G, which means its computational
complexity could become worse due to the non-direct support
in FISA. For example, TopK, an operation not in FISA, could be
very ineffective on Cambricon-F machines. As TopK can be support
indirectly through the combination of SORT1D and MERGE1D

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

primitives in FISA, solving a TopK(n,K) is O(n logn) complexity
in time. However, running a leaf node, it becomes O(n logK)
complexity in time.

Regarding the communication ineffectiveness, for a fractal
operation which is effective on a fractal machine M, its data traffic
ratio rd is irrelevant to the operation granularity G, where the
rd is defined as the ratio of data communications required to
execute on the whole machine M and on the leaf node of M, i.e.,
rd = DM/Dlea f node where D denotes data traffics. For example,
Conv3D, which is a convolutional operation with a pair of additional
spatial dimensions D and KD, could be very communication
ineffective if achieving indirectly using CV2D primitive in FISA.
While the time complexity remains the same, the lower-bound of
data traffic of such communication ineffective realization could be
O(KD) times higher than direct Conv3D primitive, as there will be
at least KD−1 partial sum of results created in the root memory as
intermediate data.

The two types of ineffectiveness at root are caused by the
indirect support in FISA. For those ineffective operations, their
execution on Cambricon-F machines are heavily limited by
combining fragmented low-level instructions, which have to be
executed sequentially. Therefore, to address the ineffectiveness
issues in fractal machines, FISA should be able to support as many
as possible operations. However, directly integrated all the possible
operations is unrealistic and costly. Hence the question is, how to
break the constraints of FISA and enable the fractal execution of
any fractal operations on a fractal machine flexibly?
Our solution. To address the ineffectiveness issue, we propose a
reconfigurable FISA (RFISA) for fractal machines, which allows
user-defined fractal instructions and user-specified executing proce-
dures. Therefore, the fragmented low-level instructions are fused
again in RFISA, enabling effective support for those ineffective
operations. In order to realize a fractal machine for RFISA, several
challenges must be addressed:
• FISA. The RFISA needs to be flexible but still keep the

programming productivity.
• Architectural Support. The corresponding architecture should

be able to support RFISA but still keep the homogeneous
characteristic of control logic in each node, so as to maintain
the fractal feature.

• Programming Paradigm. A special designed programming
model and a language is required, which should unify the
programming of both Sequential Decomposer and Parallel
Decomposer/Reduction Controller.

7.2 Reconfigurable Fractal Instruction Set Architecture
Figure 14 compares the FISA, RFISA, and traditional ISAs (e.g.,
VLIW and RISC) in terms of the abstract level (which is decisive
to productivity) and flexibility.

The topmost FISA can provide excellent productivity since it
directly maps high-level primitives (e.g., convolution and sorting)
to fractal instructions. However, other operations (which cannot
be directly mapped to one single pre-defined fractal instruction)
need to be programmed with multiple sequentially executed fractal
instructions for flexibility. As the original operation is executed
with multiple FISA instruction in sequence, all other nodes, except
for the root node, are not aware of what the original operations
is. This leads to the waste of computations and lots of chances
for data reuse. Moreover, nowadays machine learning algorithms
are evolving drastically with newly emerged high-level primitives.
Once current fractal instructions in FISA cannot emulate a new
operation, the only way to support that operation is to update the

a
b

st
ra

ct
io

n
(p

ro
d

u
ct

iv
it

y)

flexibility

FISA (Cambricon-F) RFISA (Cambricon-FR)

VLIW (GPU/ACC)

RISC (CPU)

high

low

weak strong

Fig. 14. The comparison of FISA, RFISA, VLIW, and RISC in terms of
abstraction and flexibility. The RFISA can achieve both good productivity
and flexibility.

instruction set, design and manufacture new machines with an
updated instruction set.

RFISA dominates the FISA and VLIW/RISC in Figure 14,
in terms of productivity and flexibility. In contrast to the FISA,
RFISA does not provide native fractal instructions any more.
Instead, a set of local instructions (same as in the FISA) are
provided as the basic building blocks. Table 8 lists examples of
local instructions. Based on such local instructions, for a new
operation, programmers are able to build a corresponding new
fractal instruction on demand with essential hardware supports
(which will be elaborated in Section 7.3). Therefore, the desired
operation is mapped to one single fractal instruction, instead of
multiple sequentially executed fractal instructions in FISA, so
as to improve the efficiency. In contrast to the VLIW and RISC
instruction sets, which are more closer to the native computation
ability of underlying hardware with low level of abstraction1,
RFISA can improve the productivity as high-level primitives can be
expressed as one single fractal instruction. Moreover, the flexibility
of RFISA is even better than VLIW/RISC for two aspects. First,
the diversity of local instruction (i.e., four categories including
data transfer, computational, logical and miscellaneous all operates
with both vectors and scalars) offers the opportunity to compose
various complicated operations. Second, from the programmers’
perspective, a reconfigurable and customized instruction set can
extend existing instruction set without updating the hardware,
which is very flexible for adapting to different applications.

In practice, the original fractal instructions provided in FISA
can also be pre-configured to RFISA, so that a machine with RFISA
can be fully compatible with the programs of FISA.

7.3 Cambricon-FR Architecture

In this section, we present the architecture support for RFISA,
i.e., the Cambricon-FR machine learning computers. Over-
all, Cambricon-FR maintains almost the same architecture as
Cambricon-F, except the controller modules where the controller
in Cambricon-FR is reconfigurable. In Figure 15, we show the
two controllers in both Cambricon-F and Cambricon-FR. The
controller in Cambricon-F contains a Sequential Decomposer (SD),
a Parallel Decomposer (PD), a Demotion Decoder (DD), and a
Reduction Controller (RC). Cambricon-FR replaces the SD, PD,
and RC with a new module (a reconfigurable DEC). The DEC
controls the execution of user-defined fractal instructions following
the pre-loaded user-specified executing procedures in its storage.

1. For example, many RISC instructions are directly mapping of native
functional units (e.g., ALU and FPU).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

IQ

SQ

CMR

SD DD

PD

RC

IQ
SQ DD

PDSTACK

DEC

DECC

ROM

SDSTACK

Fig. 15. Controller structure, Left : Cambricon-F. Right : Cambricon-FR.

Therefore, with the key component of DEC, Cambricon-FR is
flexible to support any fractal operation effectively.

DEC. Figure 15 illustrates the detailed structure of DEC
modules in Cambricon-FR and how it can be configured to
perform the functionalities of SD and PD in Cambricon-F. The
DEC contains a ROM, two stacks (PDSTACK and SDSTACK),
and a controller (DECC). The ROM is used to store the user-
specified executing procedures to be executed by DECC and the
two data stacks are used to preserve the states when executing
those procedures. The DEC deploys a double-thread executing
model, where one thread performs the sequential decomposing (SD
functionality) and the other performs the parallel decomposing (PD
functionality). With a pre-defined thread priority, the DEC is able
to perform one certain decomposition over the other. Additionally,
since only the decomposing strategies are different in sequential
decomposing and parallel decomposing, a user-specified executing
procedure has many parts shared for the two threads, thus reducing
the program size in ROM largely.

Dynamic control. One possible situation in Cambricon-FR
is that some instructions need data only decided in runtime, i.e.,
dynamic control. For example, when decomposing sparse data into
equal pieces where each piece contains roughly same number of
non-zero data, POPCNT (pop count) instruction will be applied to
find the exact size of each piece. As such sparse information can
only be obtained in runtime, POPCNT instruction needs dynamic
control support. Cambricon-FR supports such dynamic control
by allowing a memory address field of some RFISA instructions.
And the DEC applies a scoreboard mechanism to replace the
fields with contents from corresponding memory addresses before
every sequential decomposition. Hence the sub-instructions after
sequential decomposition can be directly sent to sub-nodes in
Cambricon-FR without requirement of dynamic control support.
7.4 Programming
DEFRACTALK programming model. To ease the burden of
programming user-specified execution procedures for user-defined
fractal instructions, we propose DEFRACTALK (Decomposing

TABLE 8
Examples of Local Instructions

Type Operation Name

Data Transfer Explicit Tensor Move tmove

Computational Element-wise Non-linear Transform veltw
Add (vector, scalar, mixture) vadd, sadd, vsadd
Horizontal Maximum / Logical ANY hmax
Matrix Multiply mmul

Logical Logical Exclusive-OR vxor, sxor
Comparison Greater Than vgt, sgt

Miscellaneous Generate Random Vector vrng
Population Count vpopcnt
Merge Sorted Lists vmerge

Programmer DeFracTalk

Declare format of inst.

Define different composition ways

Define the range of
decomposition pivot

Provide instances of inst.

Choose a decomposition way

Choose a pivot

Provide template of sub-inst.
Generate sub-inst. and
Decompose recursively

Fig. 16. DEFRACTALK programming flow.

Fractal Talk), a domain-specific programming model for pro-
gramming the Cambricon-FR DEC. The DEFRACTALK helps
the programmers to define the execution flow of user-defined
instructions but without bothering the programmers with too many
details about the machine. In Figure 16, we show the programming
flow of DEFRACTALK , where the programmers perform the left
part light-weight tasks to tell the DEC how to perform the decom-
posing process. Specifically, the programmers declare the form of
instruction with name and parameters where the DEFRACTALK

provides instruction instances with the declared name of parameters.
The programmers define several decomposition options (opt) and
the DEFRACTALK tries its best to choose a decomposition option
based on the hardware characteristics. The programmers define
the range of pivot value which is used to decide the granularity of
decomposed sub-instructions and the DEFRACTALK finds the best
pivot value based on the hardware characteristics. The programmers
provide a piece of imperative code which defines how to write
out the decomposed sub-instructions based on the pivot value and
instruction arguments given by the DEFRACTALK . Finally, the
DEFRACTALK is able to generate sub-instructions for DEC to
decompose the user-defined instructions recursively.

The key feature of DEFRACTALK is that it simplifies the
programming and hardware design by providing an interaction
interface to separate the definition and the specific decomposing
process, see Figure 16. For example, in the programming, pro-
grammers leave two key decisions, i.e., choosing the opt value and
choosing the pivot value, to be made by DEFRACTALK based on
the machine characteristics. In such way, DEFRACTALK achieves
three the key advantages:
• Independence of hardware configuration. As the decompo-

sition is largely decided by DEFRACTALK based on specific
machine configuration information, programmers are able to
define the same instruction but with different decomposition for
different Cambricon-FR machines.

• Independence of instruction granularity. As the two key
parameters are decided by the DEFRACTALK with regard to
the machine characteristics, programmers are unaware of the
detailed decomposition on internal nodes, thus providing an
instruction granularity-independent programming experience.

• Independence of SD or PD. As the DEC is configured to
perform the functionalities of SD and PD, the two types of
decomposition run in a double-thread mode. Thus, programmers
are unaware of which decomposing process is running.
DEFRACTALK Language. We propose a specialized pro-

gramming language for DEFRACTALK programming, i.e., the
DEFRACTAL (DeFracTalk Language). In order to support the
future emerging fractal operations, we design the DEFRACTAL
strictly following the definition of fractal operation (given in

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Section 2.2) and DEFRACTALK . We designed the syntax of
DEFRACTAL based on the C programming language. A part of
syntax rules are listed below:
〈translation-unit〉 ::= 〈rfisa-def 〉 〈translation-unit〉optional

〈rfisa-def 〉 ::= 〈rfisa-opcode〉 〈rfisa-param-list〉 { 〈opt-def-list〉 }

〈pivot-decl〉 ::= 〈pivot〉 : [〈lower〉 , 〈upper〉]

〈opt-def 〉 ::= 〈opt-specifier〉 〈pivot-decl〉optional 〈comp-stmt〉

〈stmt〉 ::= 〈var-decl〉 | 〈comp-stmt〉 | 〈frac-stmt〉 | 〈reduce-stmt〉 |
〈sub-inst-stmt〉

〈frac-stmt〉 ::= frac 〈expr〉 : 〈expr〉 〈stmt〉

〈reduce-stmt〉 ::= reduce 〈stmt〉

〈sub-inst-stmt〉 ::= 〈rfisa-opcode〉 〈expr-list〉 ;

The rfisa-def defines the instruction name (rfisa-opcode),
parameters (rfisa-param-list), and a list of options (opt-def) where
each opt-def defines a decomposition option. In practice, there
are opts that do not require a pivot to be defined, especially
the last decomposition which generates all local instructions.
opt-def contains a compound statement that corresponds to the
imperative code piece defining the sub-instructions. There are
three new statement types: frac-stmt, reduce-stmt and sub-inst-stmt,
correspond to the target operator f (·), the retrieving operator g(·)
as defined in Section 2.2, and the sub-instruction actually written
out. With these correspondence, an operation can be defined in
DEFRACTAL as long as it meets the formal definition of fractal
operation. In addition, DEFRACTAL provided opt-specifier to
specify whether the current defining opt is suitable in the context
of specific decomposing phases, although DEFRACTALK does not
differentiate SD and PD. This is added for performance optimizing
and simplicity of compiler design.

In Figure 17, we show the programming in DEFRACTAL using
the definition of convolution instruction CV2D as an example.
The program declares the fractal instruction CV2D, the leaf
decomposition (a local instruction conv in this example) and six
opts decomposing the instruction along the dimension of batch,
channel-out, height, width and channel-in. A special case is for
channel-in which is separated into two opts for SD and PD, since
the partial result is placed on the static segment when running in
SD, but placed on the recycle segment when running in PD. In SD
the local instruction add is serving as a sequential sub-instruction,
while in PD it becomes a reduction instruction.
7.5 Evaluation

7.5.1 Methodology
Benchmarks. In Table 9, we show all benchmarks we used to
evaluate Cambricon-FR instances. We select six fractal operations
that are not natively supported on Cambricon-F as benchmarks,
including 3D Convolution (Conv3D), Deconvolution (Deconv),
Depthwise Convolution (DwiseConv), General Matrix Multiply
(GEMM), Sparse Matrix Multiply Matrix (SPMM) and TopK, to
evaluate the inefficiency issue. We also select five machine-learning
applications which involve these operations, including C3D [51],
FCN [52], Sparse AlexNet [3], MobileNet-V2 [53] and k-Nearest
Neighbors, to evaluate the impact on overall applications.

GPUs. We use the same GPUs as baseline, i.e. Nvidia DGX-
1 and Nvidia GeForce GTX-1080Ti, see Section 5. To evaluate
both performance and programming productivity accurately on
GPU systems, we write programs of benchmarks in plain CUDA
C++ without calling computation libraries. On DGX-1, we write
plain CUDA kernel functions utilizing TensorCore when possible.
We report the maximum possible throughput as the performance

Cv2D in DeFracTaL

CV2D WT[CO,KY,KX,CI], IN[BT,YI,XI,CI], OUT[BT,YO,XO,CO] {

opt(r,p) bt : [1, BT] {

static WT;

frac bt : BT {

CV2D WT, IN[BT:...bt:bt,YI,XI,CI], OUT[BT:...bt:bt,YO,XO,CO];

}

} opt co : [1, CO] {

static IN;

frac co : CO {

CV2D WT[CO:...co:co,KY,KX,CI], IN, OUT[BT,YO,XO,CO:...co:co];

}

} opt(r,p) yo : [KY, YO] {

static WT;

frac yo : YO {

CV2D WT, IN[BT,YI:...yo:yo+KY-1,XI,CI], OUT[BT,YO:...yo:yo,XO,CO];

}

} opt(r,p) xo : [KX, XO] {

static WT;

frac xo : XO {

CV2D WT, IN[BT,YI,XI:...xo:xo+KX-1,CI], OUT[BT,YO,XO:...xo:xo,CO];

}

} opt(s,r) ci : [1, CI] {

static par[BT,YO,XO,CO], res[BT,YO,XO,CO];

frac ci : CI {

CV2D WT[CO,KY,KX,CI:...ci:ci], IN[BT,YI,XI,CI:...ci:ci], par;

add res, par, res;

}

OUT = res;

} opt(p) ci : [1, CI] {

frac ci : CI {

recycle par[BT,YO,XO,CO];

CV2D WT[CO,KY,KX,CI:...ci:ci], IN[BT,YI,XI,CI:...ci:ci], par;

} reduce add par..., OUT;

} opt(l) {

conv WT, IN, OUT, CI, CO, KX, KY, XO, YO, BT;

}

}

Fig. 17. A DEFRACTAL program defining CV2D.

metric by testing on various batch size setup. Lines of Source Code
(SLoC) are used as the quantitative metrics, which are including
minimum required codes to run the computation, excluding data
preprocessing, any comments, blank lines or dead codes.

Cambricon-Fs and Cambricon-FRs. We also use the same
configuration for Cambricon-Fs and Cambricon-FRs as described
in Section 5. Cambricon-FR1 and Cambricon-FR100 have the same
configuration as Cambricon-F1 and Cambricon-F100 respectively,
despite the different controller structures. We write the program
in FISA/RFISA instructions, and also DEFRACTAL specifying
new operations on Cambricon-FRs. Since programs can be ported
without any adjustment between fractal machines, the codes on
Cambricon-F1 and Cambricon-F100 are shared, so does Cambricon-
FR1 and Cambricon-FR100. Therefore, we report SLoCs for
Cambricon-F and Cambricon-FR, not the specific instances. We
build C++ simulator to simulate these programs to obtain perfor-
mance. The C++ simulator is event-driven, behavioral, modeled
the execution on the hierarchical pipeline, which is sufficient to

TABLE 9
Benchmarks.

Benchmark Dataset / Size Configuration

CONV3D 16×56×56×64, K=3
DECONV 224×224×256, K=3, S=2

DWISECONV 224×224×256, K=3
GEMM 32,768×32,768×32,768
SPMM 32,768×32,768×32,768, 60% sparse ratio (left)

TOPK 1 GB data, K = 512

C3D [51] UCF101 [54] dataset
FCN [52] PASCAL VOC2012 [55] dataset

SPARSE ALEXNET [3] ImageNet [41] dataset
MOBILENET-V2 [53] ImageNet dataset

K-NN MNIST [56] dataset, K = 5

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Con
v3

d

Deco
nv

Dwise
Con

v
GEM

M
SP

MM
To

pK C3D FC
N

Sp
Alex

Net

MNetv
2

kN
N

Geo
Avg

100

101

102

sp
ee

d
up

Cambricon-F1
Cambricon-FR1

Con
v3

d

Deco
nv

Dwise
Con

v
GEM

M
SP

MM
To

pK C3D FC
N

Sp
Alex

Net

MNetv
2

kN
N

Geo
Avg

100

101

102

sp
ee

d
up

Cambricon-F100
Cambricon-FR100

Fig. 18. Speed up fractal machines compared to GPU. Top: Cambricon-
F1 versus Cambricon-FR1. Bottom: Cambricon-F100 versus Cambricon-
FR100.

differentiate Cambricon-Fs and Cambricon-FRs.

7.5.2 Experimental Results
Performance. The performance comparison is shown in Figure 18.
For the desktop-scale fractal machines, Cambricon-FR1 runs
1.96x faster than Cambricon-F1 on average, and for the server-
scale fractal machines, Cambricon-FR100 runs 2.49x faster than
Cambricon-F100 on average. The result shows that RFISA breaks
the obstruction lying between split FISA instructions, and achieved
remarkable performance improvement on most of the benchmarks.

Depthwise convolution achieves a 5.72x higher performance
on Cambricon-FR1 versus Cambricon-F1, and a 13.63x higher
performance on Cambricon-FR100 versus Cambricon-F100. The
reason is that without RFISA, depthwise convolution is built upon
massive element-wise multiplication, which has a poor data locality;
with a user-defined depthwise convolution instruction, the data
locality exploited in the convolutional window can be preserved
through every memory hierarchies. Since depthwise convolution is
improved greatly, MobileNet-V2 which is mainly constructed from
depthwise and pointwise convolutions also benefits a lot, resulting
in a 2.90x/5.30x performance gain.

Conv3D achieves a 3.60x higher performance on Cambricon-
FR100 versus Cambricon-F100, but there are only negligible
improvements achieved on Cambricon-FR1 versus Cambricon-
F1. As analysed in Section 7.1, Conv3D is communication
ineffective on Cambricon-F and have a KD times higher lower-
bound of communication. But on a smaller-scaled machine as
Cambricon-FR1, the communication is already bounded by the
memory capacity of the fractal nodes, thus the communication
ineffectiveness has been hidden. Similar effects can be observed
also on C3D and GEMM.

In contrast, TopK achieves an 18.88x higher performance
on Cambricon-FR1 versus Cambricon-F1, but only 2.17x higher
on Cambricon-FR100 versus Cambricon-F100. As analysed in
Section 7.1, TopK is computation ineffective on Cambricon-F
and have a worse time complexity. Cambricon-FR can reduce
computation operations required in TopK dramatically, but for
communications, the reduction is not as much. On a larger-scaled

Con
v3

d

Deco
nv

Dwise
Con

v
GEM

M
SP

MM
To

pK C3D FC
N

Sp
Alex

Net

MNetv
2

kN
N

Ave
rag

e
0

200
400
600
800

1000
1200
1400

pr
od

uc
tiv

ity
 (S

Lo
C) Cambricon-F

Cambricon-FR
1080Ti
DGX-1

Fig. 19. Programming Productivity of Cambricon-F, Cambricon-FR and
GPUs quantitated in SLoC.

machine as Cambricon-FR100, the computation power is much
higher but the bandwidth is limited, thus the effect on reducing
computation operations cannot be clearly manifested.

Programming productivity. Programming productivity can be
measured from the perspective of algorithm programmers or system
software developers (including compiler). Regarding the practition-
ers, they can only write one program for multiple Cambricon-
F/Cambricon-FR machines. The required programs are reduced
from N to 1, significantly improved programming productivity. And
for programming a certain program, Cambricon-F/Cambricon-FR
provides a similar programming experience as the programming
framework (e.g. TensorFlow, PyTorch, etc.). In Figure 19, we report
the SLoC to quantitatively measure the programming productivity
of algorithm programmers for one certain program. Compared
to DGX-1 and 1080Ti, Cambricon-FR saves SLoC with a factor
of 6.35, 6.06 on average, respectively, showing the significant
improvement of programming productivity. And for N Cambrion-
F/Cambricon-FR machines, the programming productivity can be
further improved by N times, as non-fractal machines would have
to write different programs for high efficiency.

Regarding the system software developers, they program to
provide a programming environment to algorithm programmers.
For Cambricon-FR machines, the DEFRACTAL code is used to
define new RFISA instructions, thus it can be treated as the
system software programming. Since Cambricon-FR requires
additional DEFRACTAL codes, the SLoC of Cambricon-F is less
than Cambricon-FR, with a factor of 4.70 on average. However,
once the DEFRACTAL codes are written, they can be reused
between applications. If DEFRACTAL codes are reused, they can
improve the programming productivities for Cambricon-FR over
Cambricon-F. The average length of DEFRACTAL codes is 81.1
lines, and RFISA codes are shorter than FISA codes with a factor
of 1.30, with the help of newly defined instructions.

8 RELATED WORK

Machine learning accelerators. Due to the end of Moore’s Law
and Dennard Scaling, domain-specific accelerators designed for
machine learning, especially DNNs, have become hot topics of
computer architecture community in recent years. Many machine
learning workloads have high intrinsic parallelism to be exploited
by specific architecture. Most recent works are included in [57],
[58], [59], [60], [61], [62], [63].

Yunji Chen et al. proposed the DianNao family of machine
learning accelerators [22], [23], [37], [38], [39], which minimizes
memory accesses to achieve both high performance and low
power consumption. Yu-Hsin Chen et al. proposed Eyeriss [24]
accelerator for deep CNNs which adopts a reconfigurable data
path and running-length compression to skip zeros in the data,
both to minimize memory access. Google’s TPU [40] adopts a

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

systolic array of PEs as its computing component to eliminate the
requirement of local memory on PEs. Many previous works have
shown that minimizing memory accesses is essential for machine
learning accelerators, but have not quantized the effects of their
efforts to reduce memory accesses.

Machine learning computers. Akhil Arunkumar et al. pro-
posed MCM-GPU [64] to continue the scalability of monolithic
GPU. By designing memory system and integration, MCM-GPU
proposed a multi-chip module of GPUs with interconnections
and caches showing that the performance of a multilayered GPU
system can be comparable to a similarly sized, monolithic GPU.
Both MCM-GPU and Cambricon-F provided a user-transparent
extension to system scalability. Compared to Cambricon-F100
which also has a similar module—a computing card composing two
chips, the control of MCM-GPU is fine-grained and heterogeneous
while Cambricon-F100 remained homogeneous.

As the state-of-the-art GPU system, DGX-1 [15] was originally
launched by NVIDIA in 2016 featuring eight NVIDIA Tesla P100
GPUs, then refreshed with new NVIDIA Tesla V100 GPUs which
are particularly designed for deep learning acceleration. Compared
to Cambricon-F100, the eight GPUs in DGX-1 are connected in a
hybrid cube mesh network by NVLink, while the interconnection
of Cambricon-F100 nodes is limited within parent-to-children
paths, forming an H-tree topology. Building interconnection among
sibling nodes for Cambricon-F may further improve performance,
we left this exploration for future works.

ISA for heterogeneous systems. Recent research also ad-
dresses the programming productivity issue with new ISA. Venkat
et al. [65] proposed Composite-ISA which constitutes a composite
ISA superset with multi-ISA for heterogeneous multicores, while
Cambricon-F uses a unified ISA for multi-systems with different
scales.
9 CONCLUSION

In this paper, we propose Cambricon-F, machine learning comput-
ers with fractal von Neumann architecture and the same ISA,
aiming to address the emerged critical issue that hinders the
deployment of machine learning computers, i.e., programming
productivity, including both programming itself and software stack
development. We thoroughly analyze machine learning techniques
for fractal computation and solve the three different types of fractal
operation in our Cambricon-F architecture design. Cambricon-
F features the fractal computing that iteratively decomposes
an instruction on it into several instructions on low-layer sub-
nodes. Thus, achieving easy-programming and high-efficiency
simultaneously. Our results show that Cambricon-F achieves 5.14x,
2.82x better performance, 11.39x, 8.37x better efficiency on
average, with 93.8%, 74.5% smaller area costs when comparing
against 1080Ti and V100 GPU, respectively. With the unified ISA
and code for high programming productivity, Cambricon-F is also
able to achieve better performance and efficiency. Further, we
propose Cambricon-FR, featured with a reconfigurable FISA, to
flexibly and efficiently support all fractal operations. Our results
show that the two Cambricon-FR instances achieve 1.96x, 2.49x
better performance on average when comparing against Cambricon-
F instances. Cambricon-FRs are also able to save the line of codes
with a factor 5.83 on average compared to selected GPUs, thus
significantly improving the programming productivity.

ACKNOWLEDGMENTS

This work is partially supported by the National Key
Research and Development Program of China (under

Grant 2017YFA0700900, 2017YFA0700902,2017YFA0700901,
2017YFB1003101, 2018AAA0103300), the NSF of China (under
Grants 61432016, 61532016, 61672491, 61602441, 61602446,
61732002, 61702478, 61732007 and 61732020), Beijing Natural
Science Foundation (JQ18013), the 973 Program of China (under
Grant 2015CB358800), National Science and Technology Major
Project (2018ZX01031102), the Transformation and Transfer of
Scientific and Technological Achievements of Chinese Academy
of Sciences (KFJ-HGZX-013), Key Research Projects in Frontier
Science of Chinese Academy of Sciences (QYZDB-SSW-JSC001),
Strategic Priority Research Program of Chinese Academy of
Science (XDB32050200, XDC01020000) and Standardization
Research Project of Chinese Academy of Sciences (BZ201800001).

REFERENCES

[1] Google Inc., “Cloud vision: Derive insight from your images with our
powerful pretrained API models or easily train custom vision models
with AutoML Vision,” https://www.ibm.com/thought-leadership/summit-
supercomputer/.

[2] B. Jiang, R. Luo, J. Mao, T. Xiao, and Y. Jiang, “Acquisition
of localization confidence for accurate object detection,” Lecture
Notes in Computer Science, p. 816–832, 2018. [Online]. Available:
http://dx.doi.org/10.1007/978-3-030-01264-9 48

[3] A. Krizhevsky, G. E. Hinton, I. Sutskever, and G. E. Hinton, “ImageNet
Classification with Deep Convolutional Neural Networks,” Tech. Rep.,
2012.

[4] Google Inc., “Cloud speech-to-text: Speech-to-text conversion powered
by machine learning and available for short-form or long-form audio,”
https://cloud.google.com/speech-to-text/.

[5] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A
generative model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[6] Amazon, “Easily recognize famous individuals and celebrities using Ama-
zon Rekognition,” https://console.aws.amazon.com/rekognition/home.

[7] E. Zhou, Z. Cao, and J. Sun, “Gridface: Face rectification
via learning local homography transformations,” Lecture Notes
in Computer Science, p. 3–20, 2018. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-030-01270-0 1

[8] Google Inc., “CLOUD VIDEO INTELLIGENCE: Search and
discover your media content with Cloud Video Intelligence,”
https://cloud.google.com/video-intelligence/.

[9] T. Mei and C. Zhang, “Deep learning for intelligent video analysis,”
October 2017. [Online]. Available: https://www.microsoft.com/en-us/
research/publication/deep-learning-intelligent-video-analysis/

[10] S. Chaudhuri, G. Theocharous, and M. Ghavamzadeh, “Personalized
advertisement recommendation: A ranking approach to address the
ubiquitous click sparsity problem,” CoRR, vol. abs/1603.01870, 2016.
[Online]. Available: http://arxiv.org/abs/1603.01870

[11] T. Mahlmann, A. Drachen, J. Togelius, A. Canossa, and G. N. Yannakakis,
“Predicting player behavior in Tomb Raider: Underworld,” in Proceedings
of the 2010 IEEE Conference on Computational Intelligence and Games,
Aug 2010, pp. 178–185.

[12] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, F. Hui, L. Sifre, G. V. D.
Driessche, T. Graepel, and D. Hassabis, “Mastering the game of Go
without human knowledge,” Nature, vol. 550, 2017.

[13] Cambricon, “Cambricon 1H provides strong AI computing in Huawei
Kirin 980.” [Online]. Available: http://www.cambricon.com/news/index.
php?c=show&id=253

[14] Apple Inc., “Get Ready for Core ML 2,”
https://developer.apple.com/machine-learning/.

[15] NVIDIA Corporation, “NVIDIA Tesla V100 GPU Architec-
ture,” 2018, https://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf.

[16] “NVIDIA Corporation”, “NVIDIA DGX-2H,” 2018,
https://www.nvidia.com/content/dam/en-zz/es em/Solutions/Data-
Center/dgx-2/dgx-2h-datasheet-us-nvidia-841283-r6-web.pdf.

[17] Google Inc., “What makes TPUs fine-tuned for deep learning?”
2018, https://cloud.google.com/blog/products/ai-machine-learning/what-
makes-tpus-fine-tuned-for-deep-learning.

[18] IBM, “The most powerful computers on the planet,”
https://www.ibm.com/thought-leadership/summit-supercomputer/.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

[19] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and
Y. LeCun, “NeuFlow: A runtime reconfigurable dataflow processor for
vision,” in IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW). Ieee, jun 2011, pp. 109–116.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=5981829

[20] A. Biswas and A. P. Chandrakasan, “Conv-RAM: An energy-efficient
SRAM with embedded convolution computation for low-power CNN-
based machine learning applications,” in IEEE International Solid-State
Circuits Conference, vol. 61, 2018, pp. 488–490.

[21] S. Venkataramani and V. Chippa, “Quality programmable vector
processors for approximate computing,” in Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, no. i, 2013,
pp. 1–12. [Online]. Available: http://dl.acm.org/citation.cfm?id=2540710

[22] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“DianNao: a small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in Proceedings of the 19th international conference on
Architectural support for programming languages and operating systems
(ASPLOS), Salt Lake City, UT, USA, 2014, pp. 269–284. [Online].
Available: http://dl.acm.org/citation.cfm?id=2541967

[23] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou,
and Y. Chen, “PuDianNao : A Polyvalent Machine Learning Accelerator,”
in Proceedings of the 20th international conference on Architectural
support for programming languages and operating systems (ASPLOS),
2015, pp. 369–381.

[24] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture
for Energy-Efficient Dataflow for Convolutional Neural Networks,” in
2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), 2016, pp. 367–379. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7551407

[25] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “Envi-
sion: A 0.26-to-10TOPS/W subword-parallel dynamic-voltage-accuracy-
frequency-scalable Convolutional Neural Network processor in 28nm
FDSOI,” IEEE International Solid-State Circuits Conference, vol. 60, pp.
246–247, 2017.

[26] NVIDIA Corporation, “Parallel Thread Execution ISA Version 6.2,” 2018,
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html.

[27] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-
scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[28] Huawei, “Huawei Launches HiAI 2.0, Commits to Creating the
Ultimate AI App Experience,” https://www.huawei.com/en/press-
events/news/2018/11/huawei-hiai-2-ultimate-ai-app-experience.

[29] W. Sierpiński, “Sur une courbe cantorienne qui contient une image
biunivoque et continue de toute courbe donnée,” 1916.

[30] M. T. Barlow and R. F. Bass, “The construction of brownian motion on the
sierpinski carpet,” Ann. Inst. H. Poincaré, vol. 25, no. 1989, pp. 225–257,
1989.

[31] W. Wzr, V. Surfhvv, L. V. Ghsor, H. G. Rq, K. Hqg, D. Rq, P. D. Q.
Fkdoohqjlqj, P. Ohduqlqj, H. J. L. W. Wdnhv, W. Zhhnv, W. R. Wudlq,
R. Q. Irxu, and K. Hqg, “Towards Pervasive and User Staisfactory
CNN across GPU Microarchitecture,” in Proceedings of The 23rd IEEE
Symposium on High Performance Computer Architecture (HPCA), 2017.

[32] X. Zhang, C. Xie, J. Wang, W. Zhang, and X. Fu, “Towards Memory
Friendly Long-Short Term Memory Networks (LSTMs) on Mobile
GPUs,” in Proceedings of the 51st Annual IEEE/ACM International
Symposium on Microarchitecture, vol. 1537085, no. 61772350, 2018.

[33] P. Hill, A. Jain, M. Hill, B. Zamirai, C.-H. Hsu, M. A. Laurenzano,
and S. Mahlke, “DeftNN: Addressing Bottlenecks for DNN Execution
on GPUs via Synapse Vector Elimination and Near-compute Data
Fission,” in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, 2017, pp. 786–799. [Online]. Available:
https://doi.org/10.1145/3123939.3123970

[34] J. Park, H. Sharma, D. Mahajan, J. K. Kim, P. Olds, and
H. Esmaeilzadeh, “Scale-out acceleration for machine learning,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, 2017, pp. 367–381. [Online]. Available:
https://dl.acm.org/citation.cfm?id=3123979

[35] Y. Shen, M. Ferdman, and P. Milder, “Maximizing CNN Accelerator
Efficiency Through Resource Partitioning,” in Proceedings of the 44th
Annual International Symposium on Computer Architecture (ISCA’17),
2017, pp. 535–547. [Online]. Available: http://arxiv.org/abs/1607.00064

[36] T. Chen, S. Srinath, C. Batten, and G. E. Suh, “An Architectural
Framework for Accelerating Dynamic Parallel Algorithms on
Reconfigurable Hardware,” in Proceedings of the 51st Annual IEEE/ACM
International Symposium on Microarchitecture, no. 2, 2018. [Online].

Available: https://www.csl.cornell.edu/{∼}tchen/files/parallelxl-micro18.
pdf

[37] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam, “DaDianNao: A Machine-Learning Super-
computer,” in Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-47), 2015, pp. 609–622.

[38] Y. Chen, T. Chen, X. Zhiwei, and O. Temam, “DianNao
Family: Energy-Efficient Hardware Accelerators for Machine
Learning,” Communications of the ACM, vol. 57, no. 5, p.
109, 2014. [Online]. Available: 10.1145/2594446{%}5Cnhttps:
//ejwl.idm.oclc.org/login?url=http://search.ebscohost.com/login.aspx?
direct=true{&}db=bth{&}AN=95797996{&}site=ehost-live

[39] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, X. Feng, Y. Chen, and
O. Temam, “ShiDianNao: Shifting Vision Processing Closer to the Sensor,”
in Proceedings of the 42nd Annual International Symposium on Computer
Architecture, 2015, pp. 92–104.

[40] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-L. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law,
D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. Mackean, A. Maggiore,
M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix,
T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter,
D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle,
V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-
Datacenter Performance Analysis of a Tensor Processing Unit,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture (ISCA’17), 2017, pp. 1–17.

[41] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[42] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen,
“Cambricon : An Instruction Set Architecture for Neural Networks,” 2016.

[43] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of
neural networks on CPUs,” in Deep Learning and Unsupervised Feature
Learning Workshop, Neural Information Processing Systems Conference
(NIPS), 2011.

[44] H. Esmaeilzadeh, P. Saeedi, B. Araabi, C. Lucas, and S. Fakhraie,
“Neural Network Stream Processing Core (NnSP) for Embedded
Systems,” in 2006 IEEE International Symposium on Circuits and
Systems (ISCS). Ieee, 2006, pp. 2773–2776. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1693199

[45] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014. [Online].
Available: http://arxiv.org/abs/1409.1556

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[47] NVIDIA Corporation, “CUDA Toolkit Documentation v9.0.176,” 2018,
https://docs.nvidia.com/cuda/archive/9.0/.

[48] “NVIDIA Corporation”, “NVIDIA Deep Learning SDK,” 2018,
https://docs.nvidia.com/deeplearning/sdk/index.html.

[49] M. Poremba, S. Mittal, D. Li, J. S. Vetter, and Y. Xie, “DESTINY: A tool
for modeling emerging 3D NVM and eDRAM caches,” in Proceedings of
the 2015 Design, Automation & Test in Europe Conference, ser. DATE
’15. San Jose, CA, USA: EDA Consortium, 2015, pp. 1543–1546.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2755753.2757168

[50] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun.
ACM, vol. 52, no. 4, pp. 65–76, Apr. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1498765.1498785

[51] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in The IEEE
International Conference on Computer Vision (ICCV), 2015.

[52] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for
semantic segmentation,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1520–1528.

[53] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “Inverted
residuals and linear bottlenecks: Mobile networks for classification,
detection and segmentation,” CoRR, vol. abs/1801.04381, 2018. [Online].
Available: http://arxiv.org/abs/1801.04381

[54] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human
actions classes from videos in the wild,” arXiv preprint arXiv:1212.0402,
2012.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

[55] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results,” http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[56] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[57] P. Srivastava, M. Kang, S. K. Gonugondla, S. Lim, J. Choi, V. Adve,
N. S. Kim, and N. Shanbhag, “PROMISE: An end-to-end design of a
programmable mixed-signal accelerator for machine-learning algorithms,”
in 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), June 2018, pp. 43–56.

[58] F. Tu, W. Wu, S. Yin, L. Liu, and S. Wei, “RANA: Towards efficient
neural acceleration with refresh-optimized embedded DRAM,” in 2018
ACM/IEEE 45th Annual International Symposium on Computer Architec-
ture (ISCA), June 2018, pp. 340–352.

[59] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,
D. Blaaauw, and R. Das, “Neural cache: Bit-serial in-cache acceleration
of deep neural networks,” in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), June 2018, pp. 383–396.

[60] K. Hegde, J. Yu, R. Agrawal, M. Yan, M. Pellauer, and C. Fletcher,
“UCNN: Exploiting computational reuse in deep neural networks via
weight repetition,” in 2018 ACM/IEEE 45th Annual International Sympo-
sium on Computer Architecture (ISCA), June 2018, pp. 674–687.

[61] V. Akhlaghi, A. Yazdanbakhsh, K. Samadi, R. K. Gupta, and H. Es-
maeilzadeh, “SnaPEA: Predictive early activation for reducing compu-
tation in deep convolutional neural networks,” in 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA), June
2018, pp. 662–673.

[62] E. Park, D. Kim, and S. Yoo, “Energy-efficient neural network accelerator
based on outlier-aware low-precision computation,” in 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA),
June 2018, pp. 688–698.

[63] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Es-
maeilzadeh, “Bit fusion: Bit-level dynamically composable architecture
for accelerating deep neural network,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), June 2018,
pp. 764–775.

[64] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa,
A. Jaleel, C. Wu, and D. Nellans, “MCM-GPU: Multi-chip-module GPUs
for continued performance scalability,” in 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA), June 2017,
pp. 320–332.

[65] A. Venkat, H. Basavaraj, and D. M. Tullsen, “Composite-ISA Cores:
Enabling Multi-ISA Heterogeneity Using a Single ISA,” in 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2019, pp. 42–55.

Yongwei Zhao recieved the bachelor degree in Computer Science
and Technology from Huazhong University of Science and Technology,
Wuhan, China, in 2015. Now he is a PhD student of Institute of Computing
Technology, Chinese Academy of Sciences, Beijing, China, and the
University of Chinese Academy of Science, Beijing, China.

Zhe Fan recieved the bachelor degree in Computer Science and Technol-
ogy from Huazhong University of Science and Technology, Wuhan, China,
in 2017. Now he is a PhD student of Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China, and the University of
Chinese Academy of Science, Beijing, China.

Zidong Du recieved the bachelor degree of Engineering from Depart-
ment of Electronic Engineering, Tsinghua University in 2011 and PhD
degree from ICT, CAS in 2016 with the guidance from Prof. Yunji
Chen, Prof. Olivier Temam and Prof. Chengyong Wu. He is currently an
associate professor at Institute of Computing Technology (ICT), Chinese
Academy of Sciences(CAS).

Tian Zhi recieved the bachelor degree of Biomedical Engineering,
Zhejiang University in 2009 and PhD degree from IE, CAS in 2014. She
is currently an associate professor at Institute of Computing Technology
(ICT), Chinese Academy of Sciences(CAS).

Ling Li is a professor at Institute of Software, Chinese Academy of
Sciences. She joined the Godson (Loongson) project in 2009. She was
the chief architect of Godson video decoding IP. Ling Li has authored or
coauthored papers on journals (including IEEE TIP, IEEE TPDS, IET IP)
and conferences (including DCC, SPAA, ICASSP). Her research interests
include intelligent computing and video processing.

Qi Guo is a professor at Institute of Computing Technology, Chinese
Academy of Sciences, China. He received the PhD degree from Institute
of Computing Technology, Chinese Academy of Sciences in 2012. He
recieved the B.E. degree in CS from Tongji University in 2007. From 2012
to 2014, he was a staff researcher at IBM Research, China. From 2014
to 2015, he was a postdoctoral researcher at Carnegie Mellon University.
His research interests include computer architecture, machine learning,
and programming models.

Shaoli Liu received the bachelor degree in mathematics from Nankai
University, Tianjin, China, in 2009, and the PhD degree from the Institute
of Computing Technology (ICT), Chinese Academy of Sciences, Beijing,
China, in 2014. He is currently an associate professor at ICT. Hist current
research interests include parallel computing, network on chip, microar-
chitectures, hardware verification, and computational intelligence. He is
also serving in a startup called Cambricon Technologies Corporation
Limited.

Zhiwei Xu received the Ph.D. degree from the University of Southern Cal-
ifornia, Los Angeles, CA, USA, in 1987. He is currently a Professor with
the Institute of Computing Technology, Chinese Academy of Sciences,
Beijing, China. His current research interests include high-performance
computer architecture and distributed computing systems.

Tianshi Chen received the bachelor degree in mathematics from the
Special Class for the Gifted Yong, University of Science and Technology of
China (USTC), Hefei, China, in 2005, and the PhD degree in computer sci-
ence from the Department of Computer Science and Technology, USTC,
in 2010. He received the China Computer Federation Distinguished
Doctoral Dissertation Award in 2011 and the Chinese Academy of
Sciences Distinguished Doctoral Dissertation Award in 2011 for his PhD
work on computational complexity analysis of evolutionary algorithms.
He is currently an professor with the Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China. He is also serving as the
CEO of a startup called Cambricon Technologies Corporation Limited,
whose commercial processor products are named “Cambricon”.

Yunji Chen received the graduation degree from the Special Class
for the Gifted Young, University of Science and Technology of China,
Hefei, China in 2002. He received the PhD degree in computer science
from the Institute of Computing Technology (ICT), Chinese Academy of
Sciences, Beijing, China, in 2007. He is currently a professor with ICT. His
current research interests include parallel computing, microarchitectures,
hardware verification, and computational intelligence. He has authored
or coauthored one book and more than 60 papers in these areas.

