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Abstract—Machine learning techniques are pervasive tools for emerging commercial applications and many dedicated machine learning
computers on different scales have been deployed in embedded devices, servers, and data centers. Currently, most machine learning

computer architectures still focus on optimizing performance and energy efficiency instead of programming productivity. However, with the
fast development in silicon technology, programming productivity, including programming itself and software stack development, becomes

the vital reason instead of performance and power efficiency that hinders the application of machine learning computers.

In this paper, we propose Cambricon-F, which is a series of homogeneous, sequential, multi-layer, layer-similar, machine learning
computers with same ISA. A Cambricon-F machine has a fractal von Neumann architecture to iteratively manage its components: it is
with von Neumann architecture and its processing components (sub-nodes) are still Cambricon-F machines with von Neumann
architecture and the same ISA. Since different Cambricon-F instances with different scales can share the same software stack on their
common ISA, Cambricon-Fs can significantly improve the programming productivity. Moreover, we address four major challenges in
Cambricon-F architecture design, which allow Cambricon-F to achieve a high efficiency. We implement two Cambricon-F instances at
different scales, i.e., Cambricon-F100 and Cambricon-F1. Compared to GPU based machines (DGX-1 and 1080Ti), Cambricon-F
instances achieve 2.82x, 5.14x better performance, 8.37x, 11.39x better efficiency on average, with 74.5%, 93.8% smaller area costs,
respectively. We further propose Cambricon-FR, which enhances the Cambricon-F machine learning computers to flexibly and efficiently
support all the fractal operations with a reconfigurable fractal instruction set architecture. Compared to the Cambricon-F instances,
Cambricon-FR machines achieve 1.96x, 2.49x better performance on average. Most importantly, Cambricon-FR computers are able to
save the code length with a factor of 5.83, thus significantly improving the programming productivity.

Index Terms—Machine Learning, Architecture, Neural Networks, Programming Efficiency

1 INTRODUCTION

ACHINE learning techniques are pervasive tools for emerg-
M ing commercial applications, including image recognition
[1], [2], [3], speech recognition [4], [5], face cognition [6], [7],
video analysis [8], [9], advertisement recommendation [10], and
games [11], [12]. In recent years, many dedicated machine learning
computers on different scales have been deployed in embedded
devices, servers, and data centers. For example, Huawei Mate10
and P20 cellphones integrated Cambricon-1A machine learning
processor core [13]. Apple iPhone X cellphones also integrated a
machine learning subsystem to identify faces of users [14]. NVIDIA
produced DGX-1 and DGX-2 machine learning computers based
on NVIDIA GPU [15], [16]. Google announced a machine learning
computer with 100 Petaflops peak performance based on TPU-3
chips [17]. Recently, IBM announced Summit, which is a machine
learning supercomputer with 9216 POWERY CPUs and 27648
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NVIDIA V100 GPUs [18].

Currently, most machine learning computer architectures still
focus on optimizing performance and energy efficiency instead of
programming productivity. In Figure 1, we try our best effort to
summarize the power efficiencies of the most efficient machine
learning accelerators proposed in the very year from 2012 to
2018. Obviously, the power efficiency keeps increasing at a
dramatic speed, i.e., 3.2x each year. Neuflow achieves 230GOPS/W
with IBM 45nm technology in 2012 [19]. DianNao, a deep
neural network accelerator proposed in 2014, improves the power
efficiency by a factor of 4.05x. And in 2018, Conv-RAM achieves
28.1TOPS/W [20], i.e., 1213x improvement compared with those
in 2012.

While energy efficiency of machine learning computers keeps
increasing rapidly, programming productivity—including pro-
gramming itself and software stack development—becomes the
vital reason that hinders the deployment of machine learning
techniques. Even if a machine learning computer has a high peak
performance/energy efficiency, high-quality program and software
stack are still essential to fulfill the actual performance and energy
consumption requirements of machine learning applications.

Programming productivity is further compromised by different
programming interfaces in a single machine learning computer. As
illustrated in Figure 2, a traditional machine learning computer
often has many heterogeneous parallel components organized in
a hierarchical way. While programming heterogeneous systems
and parallel systems are already notoriously difficult, each layer in
a traditional hierarchical machine learning computer may have a
different programming interface, which further exacerbates the
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Fig. 1. Power efficiency of recent proposed machine learning accelera-
tors [19], [20], [21], [22], [23], [24], [25].
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Fig. 2. A typical machine learning computer architecture.

programming challenge. For example, a GPU-based machine
learning computer, such as NVIDIA DGX-2 [16], contains het-
erogeneous chips, i.e., 2 CPUs (24 cores per CPU) and 16 V100
GPUs. Except that programming multiple GPUs requires manual
work based on MPI or NCCL, programming a single GPU chip
needs to use the CUDA language to manipulate thousands of
GPU threads; programming CPUs needs to write C/C++ with
parallel API support for tens of CPU threads. Moreover, even the
software stack inside a single GPU is also quite complicated, which
includes CUDA PTX for programming grids/blocks/threads in the
GPU, and microcode for programming a stream processor [26].
Considering there have been so many different machine learning
computers, the industry needs to put huge efforts on porting system
software (including but not limited to libraries, algorithm primitives,
programming frameworks, assemblers, and compiler backends) to
machine learning computers. For instance, just in the Tensorflow
alone, there are thousands of operators [27], and optimizing an
operator (e.g., convolution) on a certain GPU can cost several
months for a skilled developer. Porting an operator to a multi-
GPU computer could be even more time-consuming. HuaWei
and Cambricon have put hundreds of software developers to port
programming frameworks to the machine learning subsystem in
Mate10 cellphone [28].

In a nutshell, the programming productivity is greatly reduced
by the heterogeneous, parallel, and layer-different nature of
machine learning computer. Hence, we claim that an ideal computer
for programmer should be homogeneous, sequential, and layer-
similar, which allows simple sequential programming for machine
learning system software and applications. Moreover, if all machine
learning computers (even with extremely different scales) have
the same ISA, then the burden of programmers can be further
alleviated, since they do not need to implement and port machine
learning system software again and again. Here the question is: Is
it possible to develop a series of homogeneous, sequential, layer-
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Fig. 3. Top: A fractal graph example: Sierpinski carpet [30]. The graph is
subdividing itself into smaller copies and continuing recursively. Botttom:
Fractal computers, analogy to Sierpinski carpet.

similar, machine learning computers with the same ISA, which still
have high efficiency?

To answer this question, we propose Cambricon-F, which
can achieve easy-programming and high-efficiency for machine
learning simultaneously. The key insight of Cambricon-F is to
organize the components of a computer in a fractal way. Originally,
the word “fractal” in math is used to describe complicated
objects which exhibit similar patterns at different scales, known as
expanding symmetry or evolving symmetry [29]. Without diving
into the controversy in math, we borrow the concept of fractal
for iterative decomposition with self-similar patterns to any scale,
see Figure 3 Top. Extended to computer domain, Cambricon-F
is a series of homogeneous, sequential, multi-layer, layer-similar,
machine learning computers with the same ISA. A Cambricon-
F machine has a fractal von Neumann architecture to iteratively
manage its components: it is with von Neumann architecture and its
processing components (sub-nodes) are still Cambricon-F machines
with von Neumann architecture and the same ISA. It features the
fractal computing that iteratively decomposes an instruction on it
into several instructions on low-layer sub-nodes. Hence, Cambricon-
Fs with different scales can be used for different scenarios from
embedded systems, desktops, data centers to supercomputers. As
shown Figure 3, a single-core accelerator, multi-core chip, multi-
chip server, and multi-server system can be architected in a fractal
way with the same ISA, for different scenarios in different scales.
Thus, programmers only need to consider one sequential ISA to run
the same code on any of such devices. Furthermore, we propose
a reconfigurable FISA for fractal machine, which allows user-
defined fractal instructions and user-specified executing procedures,
to flexibly and efficiently support all the fractal operations. We
further propose the Cambricon-FR machine learning computers to
architectural support the reconfigurable FISA.

In this paper, we made the following major contributions.

o We thoroughly find that common machine learning primitives
can be considered as fractal operations, which can be decom-
posed into several smaller self-similar operations iteratively.

« We proposed Cambricon-F, which is a series of homogeneous,
sequential, multi-layer, layer-similar, machine learning comput-
ers with fractal von Neumann architecture and same ISA. By
providing a sequential view to programmers, Cambricon-F can
achieve easy-programming and high-efficiency simultaneously.

« We summarize the four challenges in mapping different types
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of fractal operations onto Cambricon-F, including reduction
operation mapping, fractal data management, communication
congestion, and inter-instruction optimization. We propose a
series of techniques to address the four major challenges.

e We design and implement two Cambricon-F instances at differ-
ent scale down to layout level and evaluate these Cambricon-F
instances with quantitative experimental results. Compared to
GPU based machines, with higher programming productivity
(due to the same sequential ISA), Cambricon-F instances are
also able to achieve better performance and efficiency.

« We analyze the ineffectiveness in FISA and propose Cambricon-
FR, which leverages a reconfigurable fractal instruction set
architecture to efficiently and flexibly support all fractal opera-
tions.

o We evaluate two Cambricon-FR instances, i.e., Cambricon-FR1
and Cambricon-FR100. Compared to GPU based machines,
Cambricon-FR machines achieve 34.48x, 25.69x better perfor-
mance on average. Most importantly, Cambricon-FR computers
is able to save the code length with a factor of 5.83, thus
significantly improving the programming productivity.

2 FRACTAL OPERATION AND MACHINE LEARNING

In this section, we first analyze common machine learning tech-
niques by decomposing them into computing primitives. Then we
define the fractal operation, analyze three types of fractal operation
with different computing dependencies, and demonstrate that all
common machine learning computing primitives fall into the three
types of fractal operation. We finally present the challenges in
designing a fractal architecture that can effectively process all three
types of fractal operations.

2.1 Machine Learning

Machine Learning Techniques. Machine learning techniques
are usually computation&memory intensive and diverse in many
aspects, such as processing flow, learning style, and training
methodology. Fortunately, they are highly paralleled at different
levels, and thus can be accelerated with heterogeneous machine
learning computers, which equip dedicated devices, including
GPU [31], [32], [33], FPGA [34], [35], [36], and even ASIC
chips [23], [37], [38], [39], [40]. Here, we first decompose these
techniques into computing primitives, then illustrate the mapping
to fraction computing form.

Computing primitives. We select six representative techniques
and decompose the CPU execution time with typical dataset into
their common primitives, see Table 1. Specifically, for the popular-
ity of deep learning, we select the famous AlexNet [3] running with
ImageNet [41] to represent convolutional neural networks (CNNs),
a 3-layer multi-layer perceptron (MLP) to deep neural networks

TABLE 1
Decomposing execution times of typical machine learning techniques
into common primitives (IP: inner production; CONV: convolution; POOL:
pooling; MMM: matrix multiplying matrix; ELTW: element-wise operation;
SORT: sorting; COUNT: counting).

ML Primitives

1P CONV POOL MMM ELTW SORT COUNT

CNN 947% 0.18% 5.02% 0.12%

DNN - - - 99.9% 0.11% - -
k-Means 90.8% - 0.116% - 9.08% 0.178% 0.012%
k-NN 99.6% - - - - 0.432% -

SVM 993% - 0.190% - 0.507% -

LVQ 39.9% - 0.254% - 59.8%
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Fig. 4. Fractal operation dependency: (a) independent; (b) input depen-
dent; (c) output dependent.

(DNNGs). Others are k-means, k-NN, support vector machine (SVM),
and learning vector quantization (LVQ). In line with previous
works [23], [42], [43], [44], we decompose machine learning
techniques into matrix and vector based operations. We aggregate
operations such as vector multiplying matrix and matrix multiplying
vector into matrix multiplying matrix, operations such as matrix
adding/subtracting matrix, matrix multiplying scalar, and vector
elementary arithmetics into element-wise operation. Hence we get
seven major computing primitives after decomposition, including
convolution (CONV), pooling (POOL), matrix multiplying matrix
(MMM), element-wise operation (ELTW), sorting (SORT), and
counting (COUNT). We still have CONV, POOL primitives instead
of only using MMM for the convenience of analyzing and mapping
emerging important deep learning algorithms. Note that IP is
actually vector-multiplying-vector, which can also represent the
fully connected layer in deep networks. It can be observed that
these seven computing primitives characterize machine learning
techniques mainly.

2.2 Fractal operation

Fractal operation. We say that an operation f(-) with an input
tensor X is a fractal operation if there exists an operation g(-)
allowing

where f(-) is the target operator, g(-) is the retrieving operator, X
represents all operands of f(-), Xa,Xp,... are the subsets of X.
Based on the relationship among X4, Xg... and X, we can divide
the fractal operations into three categories: independent, input
dependent, and output dependent.

o If X4, Xp... are independent, non-overlapped to each other, each
subset is independent that they can be computed locally, i.e.,
independent. In Figure 4 (a), we use a vector adding operation
as an example to present independent fractal operation. For
clear illustration, we split X into two operands, i.e., X,y—
two input vectors for adding. As X and ¥ can be divided into
two independent pieces (X4,xp and yx,yp), two vector adding
operations can be achieved independently, i.e., 74 = X4 + ya
and zp = xp + yp. Each piece is working on independent part
of the inputs and the final outputs just need assemble with
no additional operation, i.e., 7 = [z4,z5]. Thus, g(-) is linear
function g(x) = x.

o If X4, Xp... are overlapped, each subset requires extra copies
of some inputs that leads input redundancy in the fractal
operation, i.e., input dependent. For example, a one-dimensional
convolution as shown in Figure 4 (b). Similarly, we use X,y
to represent two operands and ¥ = [x},Xp]. We still divide the
operation into two pieces, where each piece is working on
independent part of outputs, i.e., 7 = [Z4,2p] = X%y = [X4,XB]| * V.
However, these two operations have overlapped inputs, where
parts of X3 and Xp (X, X}, respectively) are required additionally,
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Fig. 5. CONV decomposition. Left: dividing in channel dimension. Right:
dividing in height dimension.

i.e., Zp = [X4,%p) ¥ and Zp = [x,,Xp] * Y. But, there is still no
additional operation for final outputs, i.e., g(x) = x.

In some cases, g(-) is introduced to reduce the results of pieces
into the final results, i.e., output dependent. For example, as
shown in Figure 4 (c), an inner production operation (z =
X-¥) can be divided into smaller pieces where each piece still
performs an inner production operation (z4 = X4 - y4 and zg =
Xp-yp); but to get the final results, the results of those pieces will
be summed up, i.e., z =z4 + zg. Thus, g(-) is the sum operation,
g(-) = sum(-). Note that a fractal operation can be both output
dependent and input dependent.

2.3 Fractal computing for machine learning

We present how machine learning computing primitives can be
accomplished in a fractal form (i.e., fractal computing) and analyze
the challenges for designing corresponding architecture. Based on
the above analysis, we can classify all machine learning primitives
into three categories, see Table 2. Note that different decomposition
can lead to different dependence. For example, CONV can divide
the input features maps in channel dimension, where the final
outputs rely on results from each divided pieces (thus output
dependent), as shown in Figure 5 (left); CONV can divide the input
feature maps in height or width dimension, where each part of
the output results only need inputs with some overlaps (thus input
dependent), as shown in Figure 5 (right).

More importantly, to effectively process fractal operations,
fractal architecture should be built hierarchically with a tree-like
topology where several son nodes compose a father node iteratively,
see example Cambricon-F architecture shown in Figure 3. Obvi-
ously, independent operations are easily mapped to such fractal
architecture and computed fractally. Also, input dependent can be
transformed to independent with input redundancy. For the 1D
convolution operation in Figure 4 (b), each part only needs some
more inputs from X then the fractal operation is independent. In
Table 2, we present the analysis of decomposition of computing
primitives in a fractal form. Additionally, we present the data
redundancy if using independent decomposition instead of input
dependent. For the output dependency operations, g(-) is inevitable
no matter whether inputs are dependent or independent. Thus, it
is totally feasible to perform machine learning computations in

TABLE 2
Computing primitives analysis.

Primitives ~ Decomposition ~ Dependency  g(-) Data Redundancy
1P Length-Wise Output Add -

CONV Feature-Wise Output Add -

CONV Batch-Wise Input - Weight

CONV Spatial Input - Weight, Overlapped
POOL Feature-Wise Independent - -

POOL Spatial Input - Overlapped
MMM Left, Vertical Output Add -

MMM Right, Vertical Input - Left Matrix
ELTW Any Independent - -

SORT Any Output Merge -

COUNT Any Output Add -

Level O (top) Level N (leaf node)

Controller Controller
Mem Mem

Local instructions fractcal instructions
FU FFU FFU FFU

Level i Level i+1
local  Controller local  Controller

Mem instructions ’ Mem instructions
fractal instructions % fractal instructions
LFU FFU FFU LFU FFU FFU
LFU FFU FFU | LFU FFU FFU

Fig. 6. A typical fractal von Neumann architecture: level 0 (top
node)...level i node and its son node in level i + 1...level N (leaf node).

a fractal form. But for designing fractal architecture, we must
solve the following challenges related to extra data redundancy and
reduction operation g(-):

« Reduction Operation. Reduction operation g(-) in output
dependent operations are not naturally fitted in fractal operation
as independent and input dependent operations. Thus, for
efficiently processing g(+), we introduce lightweight computing
unit (i.e., LFU) in each node locally. By aggregating data in
son FFUs into a father LFU iteratively, such operations can
be processed efficiently in father LFUs in Cambricon-F. We
introduce that in detail in later Section 3.1, 3.2, 3.3.

« Data Redundancy. In fractal operation computing, input de-
pendent operations can be computed as independent operations
but with data redundancy. For that, the memory is hierarchically
organized and the memory allocation leveraging the separable
time order (Section 3.5).

« Communication. Communication among different nodes would
lead to enormous wire connections and consequently to be
costly in terms of area, latency, and energy. For that, from our
analysis, even the output dependent operations only require
data movements from leaf to root node for reduction operations.
Thus, it is unnecessary to have communication between any
pair of nodes. In Cambricon-F, we organize the machine
learning computations iteratively in a fractal form and limit
the connections to father-son nodes only, thus reducing the wire
congestion (Section 3.3, 3.4).

In summary, after addressing the above concerns, the fractal

architecture would be able to achieve at least comparable efficiency

with traditional architecture for machine learning applications.

3 CAMBRICON-F COMPUTERS

In this section, we present the Cambricon-F computers from the
architects’ perspective, including overall architecture, instruction
set architecture, decoder, pipeline, memory hierarchy, and imple-
mentation details.

3.1 Fractal von Neumann Architecture

A Cambricon-F machine has a fractal von Neumann architecture,
which is hierarchical architecture built iteratively, as illustrated in
Figure 6. At the top level (root node), programmers should only
learn a simple von Neumann architecture that contains a memory
component (Mem), a functional unit (FU), and a controller with a
decoder inside to decode instructions. In the middle levels, each
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node is still with von Neumann architecture, containing a controller
(it can be either hardware or software), a memory component
(Mem), several processing units including local functional units
(LFU) and several fractal functional units (FFU). Each FFU is a
son node (Level i+1) of the current node (Level i) and has the same
ISA and similar architecture. At the bottom level, each leaf node
is an accelerator that finishes the most part of the computation.
Therefore, a Cambricon-F machine is built with a fractal von
Neumann architecture to iteratively manage its components.

The ISA of Cambricon-F is Fractal Instruction Set Architecture
(FISA), where each fractal operation can be performed with one
or more FISA instructions. FISA includes two different kinds of
instructions: local instructions and fractal instructions. For a local
instruction, the controller can directly issue it to an LFU, and the
LFU will complete the local instruction. For a fractal instruction,
the controller will translate into several instruction segments, where
each instruction segment is solved by an FFU. Hence, programming
Cambricon-F only needs to consider a single sequential ISA, while
the heterogeneity can be implicitly solved through the collaboration
between LFUs and FFUs, and the parallelism can be implicitly
solved through the parallelism between FFUs. Since an Cambricon-
F computer and its all descendant Cambricon-Fs/FFUs have the
same ISA, a programmer does not need to consider the difference
between different layers of a machine learning computer. Moreover,
different Cambricon-F computers with different scales (either a
machine learning supercomputer or a small machine learning
subsystem in a cellphone) can use the same ISA, which allows a
same binary code to run on platforms from cloud to end.

To efficiently process fractal operations, Cambricon-F adopts
a hierarchical memory system. Cambricon-F manages the storage
in two types: global memory and local memory. At the top level,
Cambricon-F contains a larger memory for buffering input data,
i.e., the global memory, which is also visible to programmers. Each
node in Cambricon-F contains a local storage to buffer the data,
which will become a “global memory* shared among its son nodes.
In such a manner, we manage all the memory in Cambricon-F
hierarchically.

3.2 Instruction Set Architecture

Cambricon-F leverages a special instruction set architecture to
achieve the fractal computing, i.e., Fractal Instruction Set Architec-
ture (FISA). Formally, we give the definitions of FISA instruction
and FISA:

o FISA instruction. A FISA instruction, I, is a 3-tuple (O, P,G),
where O is an operation, P is a finite set of operands, G is
granularity indicator.

e Fractal instruction. A FISA instruction, 1(O,P,G), is a
fractal instruction, iff there exists a set of scale indicators

1:G%,...,G, (G =< G, =< is the partial order defined on scale
indicators) that / can be achieved through computing with
I(G)),15(G5),. ... 1,(G)) and other FISA instructions iteratively.

« An ISA set is a FISA set, iff it contains at least one fractal FISA
instruction.

« A machine M running FISA set is a fractal machine, iff there
exists at least one fractal instruction that is fractal-executed on
M.

The FISA design for Cambricon-F stays at a relatively higher
level so as to improve the programming productivity with same
sequential code, as in Table 3 where we show a subset of FISA.
Primitives such as convolution and sorting can be directly expressed
with FISA instructions. Operations of low operation intensity (e.g.

SD (Async) D LD EX RD wB

— > PD ————— > > FFUs

CMR

—|_|:Q—|-SD — bb RC —

TTT

-+ LFUs

sQ
J —— -2 DMAC » DMA
oTTT r

Fig. 7. Pipeline partition in an Cambricon-F node.

Element-Wise Operations) are also supported in FISA for better
programming versatility. Such instructions will be considered as a
reduction operation by Cambricon-F and tend to execute on LFUs.

3.3 Controller

The controller exists in each node in a Cambricon-F, serving
to manage its son nodes working in a fractal manner. From a
functionality perspective, the controller consists of three phases: a
sequential decomposition phase, a demotion phase, and a parallel
decomposition phase. Several specific modules are thusly designed
in pipeline stages to accomplish the transformation procedure from
input instructions to sub-level nodes, including FFUs and LFUs,
see Figure 7. Briefly, in sequential decomposition phase, input
instructions are loaded into Inst Queue (1Q), which is later fetched
by Sequential decomposer (SD). SD decomposes into a sequential
executed instruction list regarding the hardware limitation. In
demotion phase, reformed instructions in the list are decoded
by Demotion Decoder (DD) into sub-level instructions. In parallel
decomposition phase, sub-level instructions for fractal computing
will be passed to FFUs through a Parallel decomposer (PD), for
local computations to LFUs through a Reduction Controller (RC),
for data movements to DMA Controller (DMAC) to access memory.

Particularly, Demotion Decoder, the key component in con-
troller, decode input upper instructions to sub-level instructions
to be fractally computed. For each sub-level instruction SQ, DD
checks operand dependencies to instructions running in the pipeline.
DD will stall the pipeline if a read-after-write (RAW) dependency
exists. DD also checks the storage requirements of operands,
allocates memory space locally, and generates DMA instructions.
DMA instructions will be sent to DMAC for data exchange between
local memory and “’shared memory” in upper level, e.g., loading
sources or writing back results. DD then binds the new local
addresses to operands in sub-level instructions which later sent to
PD for fractal computing, RC for reduction operations.

TABLE 3
Examples of Cambricon-F Instructions

Type Operation Name
Deep Convolution Cv2D, Cv3D
Learnin Pooling MAX2D, MIN2D, AvG2D
Carning RN [3] LRN
Linear Matrix Multiplication ~MATMUL
Algebra Euclidian Distance EUCLIDIAN1D
Sort Merge Sort SORT1D
Count Count COuNTID
Binary Element-wise ~ ADD1D, SuB1D, MUL1D
Reducti Unary Element-wise AcT1D
Cauetion  Horizontal HSUMID, HPROD1D
Merge MERGEID
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Fig. 8. Fractal Pipeline of FISA.

Parallel decomposer subdivides sub-level instructions into
multiple FISA instructions, i.e., fractal instructions, that are
assigned FFUs. FFUs process fractal FISA instructions during
the EX pipeline stage in parallel.

Reduction Controller aims to perform the reduction operation
in output dependent fractal operations normally. However, reduction
operation can be assigned to FFUs instead of LFUs for high
efficiency, when RC predicts significantly reduced execution
time on FFUs or founds LFUs unavailable. In cases, Reduction
Controller send a commission to PD by writing the operation
into Commission Register (CMR). PD will check if there is a
commission in the register at the start of each FISA cycle, and
append the commissioned operation.

3.4 Pipelining

Normally, Cambricon-F performs each instruction recursively. Top
level (level 0) node decodes and sends fractal instructions to its
FFUs where each FFU repeats the decoding/sending procedure
until the leaf nodes for execution. Leaf nodes return computed
results to their father nodes and that repeats until the top node.
During such execution process, FFUs in leaf nodes, where the
heavy computation tasks are performed, are idle when its upper-
level nodes are decoding instructions recursively.

Thus, in order to increase the throughput of Cambricon-F, we
pipeline the FISA instruction execution into five stages: Instruction
Decoding (ID), Loading (LD), Execution (EX), Reduction (RD)
and Writing Back (WB), see Figure 7. Similar to pipeline in CPUs,
an issued instruction will be decoded local instructions, fractal
instructions, and DMA operations in the Controller (ID). Data
is loaded from memory to local storage for FFUs and LFUs
computation (EX stage) with DMA operations at LD stage. LFUs
will start the reduction operations at RD stage or be bypassed if
no reduction operation needed. The final or partial results will
be written to memory from local storage at WB stage. Note that
SD is executed asynchronically where SD keeps decompositing
instructions from /Q to SQ.

As each node in Cambricon-F executes its 5-stage pipeline for
its instructions, Cambricon-F will execute FISA with a recursive
pipeline. In Figure 8, we show the pipeline for a two-level
Cambricon-F. In the EX stage of level 0, FFUs run their own
pipeline, i.e., level 1 pipeline. As a result, the recursive pipeline of
FISA has utilized every component of every hierarchy at almost
any time, except the pipeline startup and emptying.

3.5 Memory Management

As each phase in the Controller may require memory allocation,
memory management is challenging and more critical to the overall
efficiency. Fortunately, we observe that memory blocks for parallel
decomposition only live in EX and sometimes RD pipeline stage,
and blocks for demotion live in the whole FISA cycle. But memory
blocks for sequential decomposition may live across multiple

Recycled 1 Recycled 2 Recycled 3 Static Even Static Odd

Fig. 9. Memory Management of Cambricon-F Controller. The memory
space is divided into 4 segments (3 recycling and 1 static), managed as
5 stacks (2 stacks in the static segment).

FISA cycles since there could be multiple sub-level instructions
decomposed from the FISA instruction.

As shown in Figure 9, memory space is always allocated
in the list order, which is consistent with the time order that
Controller requests. For the memory allocation alive for multiple
FISA instructions, i.e. those for sequential decomposition, we use
the fourth memory space (static segment) which is shared by every
pipeline stage for their different lifecycles. Memory allocation
to static segment are double-ended for parity of instructions to
avoid overlapped memory lifecycles of adjacent instructions. The
design of the allocation list significantly reduces the complexity of
memory management, and keep the space utilization efficiency.

Here, we do not manually release the allocated memory space,
where new instruction will directly refill with new data. The reason
is two-fold. First, results of instruction will be written back and
the remain inputs or intermediate results are usually useless for
later computations, as our FISA instructions work at a relatively
higher level. Second, for seldom cases that following instructions
may share the inputs/outputs, we implement a Tensor Transposition
Table (TTT) to find out data that can be forwarded or reused,
resulting in a similar behaviour as pipeline forwarding” in common
practices of processor pipelines.

3.6 Data consistency and coherence.

In Cambricon-F, we apply many constraints to manage the data con-
sistency and coherence problems. Since our system will decompose
the operation into smaller non-overlapped segments for son nodes
execution; thus, data may have many copies in different nodes.
However, as presented in Section 3.5, our instruction generation
will not allow write data to the read address space, thus ensuring
data consistency naturally in most of the cases. Additionally, Tensor
Transposition Table introduces the risk of data inconsistency as
it forwards data from write address space to read address space.
Instead of implementing costly consistency protocols, we set up
a validity period for each record in TTT. TTT is split into banks
as memory spaces does, where each bank only maintains the
information of its corresponding memory segment. Whenever the
segment is recycled, new data are allocated on, and old data may be
overwritten thus never safe to forward again, the TTT invalidates all
records. Thus, with such validity mechanism, the lifetime of records
won’t exceed the lifetime of the referenced data. To guarantee
the data coherence, simultaneous memory writes into the same
memory address are always prohibited. The destination addresses
of instructions assigned to each FFU will always be different.

4 PROGRAMMING AND EXECUTION

Programming. With all the effort to provide programmers with
sequential programming experiences, Cambricon-F are able to run
the same piece of code without any other work. In Figure 10, we
show a typical Cambricon-F inline assembly code using a k-Nearest
Neighbor algorithm as a driving example. The principle of FISA is
that the nodes perform their own duties and Do Not Interfere with
how the child nodes work. The programmer of Cambricon-F, which
acts as the “controller” beyond the top level node, also follows
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k-Nearest Neighbors

int K = 5, N = 262144

tensor C[1,N], X[512,N]

tensor D[N,N], C2[N,N]

c2[:] = c[o]

# calculate distance for each pair of samples
fisa euclidianid X, X, D

tensor C3[K,N], P[K,N]

# sort to find k-nearest neighbors' category
fisa sortid D, dc, C2, C3[K,N][N,N][0,0]

# population count in k categories

fisa countld C3, P

# sort to find the most popular category
fisa sortid P, dc, C3, C[1,N][K,N][K-1,0]

Fig. 10. An Cambricon-F program of k-NN.

Programmer Task

Level 0 [+—{

Level 1 [+—

Level 2 [+«—

Programmer Task

Level 0 [+—{

| Level 1 j+—{

Fig. 11. STMH execution model.

the principle. The programming of Cambricon-F has the following
characteristics:

« High level, arbitrary granularity. Each FISA instruction
is corresponding to a complete machine learning primitive.
The programmer does not interfere with how the operation
is decomposed. High-level instructions bring higher operational
intensity and help decrease data movements.

« Implicit data movement. Contrary to RISC, Cambricon-F does
not provide explicit load-store instruction to the programmer.
FISA hides the internal storage from the programmer by forcing
all operands to be external. The programmer does not interfere
with how the internal storage is used, so the program does not
need to adapt to different internal storage sizes when applied to
different Cambricon-F instances or nodes.

« Hardware transparency. Note that there is no hardware infor-
mation appeared in the code. The programmer of Cambricon-F
only dedicates on defining the computation task, and do not
interfere with the internal hardware behaviors.

For the next level nodes, the controller of the parent node
acts as a programmer. The Do-Not-Interfere principle reduced the
complexity of the programming, meanwhile, it also reduced the
complexity of the controller.

Execution on Different Cambricon-F Instances. The execu-
tion model of Cambricon-F can be summarized as Single Task,
Multiple Heritors (STMH). As shown in Figure 11, a task is
executed simultaneously on every hierarchies of Cambricon-F,
where each hierarchy see a part of the task with different granularity.
STMH defines how two adjacent hierarchies cooperate reducing
the granularity to inherit the task from the higher hierarchy to the
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lower hierarchy. More specifically, the cooperating mechanics can
be decoupled to two relations: the relation with parent node, and
the relation between sibling nodes. Here, we define the paternity
relation via Sequential decomposer, and the sibling relation via
Parallel decomposer. Given the paternity and sibling relations,
and under the assumption that leaf nodes can solve the assigned
tasks directly, the execution of whole machine is clearly defined,
regardless what configuration does the Cambricon-F instance have.

5 METHODOLOGY

Benchmarks. As shown in Table 4, we use seven different
benchmarks in this paper. For the importance of deep learning,
we select VGG-16 [45], a 16-layer CNN with 138 M parameters in
total, and ResNet-152 [46], a very deep network with 152 layers,
running with ImageNet [41] dataset as representative benchmarks.
We also select four popular machine learning techniques, including
K-NN, K-MEANS, LVQ, and SVM, as representative benchmarks.
For these four machine learning techniques, we use a randomly
generated data set, which contains 262 thousand 512-dimension
samples within 128 categories, to emulate a computation-heavy
scenario. Additionally, as MATMUL is the most important operation
in the machine learning domain, we also include MATMUL running
with randomly generated 32768-order square matrices as our
benchmark.

GPUs. In this paper, we select two GPUs as our baseline, i.e.,
Nvidia DGX-1 [15] and Nvidia GeForce GTX-1080Ti. DGX-
1 is a supercomputer with eight NVIDIA Tesla V100-SXM2
GPUs, where each has a 125TeraOps/sec peak performance. The
bandwidth from the host to devices is measured as 84.24GB/s in
total. 1080Ti is a high-end graphics card with 10.6TeraOps/sec
peak performance and 484GB/s memory bandwidth. For DGX-1,
we program the benchmarks under the framework TensorFlow
1.9 [27] with GPU support (CUDA 9.0 [47] and cuDNN 7 [48]),
and optimize the computation graph via NVIDIA TensorRT 4 [48].
We use nvprof and nvidia-smi to measure its power and
memory bandwidth usage.

Cambricon-F. We build two different size Cambricon-F in-
stances that have similar characteristics as GPUs, i.e., Cambricon-
F100 and Cambricon-F1, for a fair comparison to GPUs.
Cambricon-F100 is a fractal machine learning supercomputer with
a peak performance of 956 Top/s, similar to DGX-1 (125%8=1000
Tops/s). Cambricon-F100 is a five-level architecture of Server,
Card, Chip, Fractal Multiprocessor (FMP), and Core in each level
from top to bottom, see Table 5. At the top level (LO), Cambricon-
F100 contains four Cambricon-F100 Computing Cards connected
through PCI-E 3.0, a host CPU (Intel Xeon E5-4640 v4) serving
as high-level controller and LFU, and 1TB host memory. The leaf
node (L4) is a Cambricon-F accelerator serving as a computing
Core, which has 256 KB eDRAM local storage, 16 x 16 MAC

TABLE 4
Benchmarks.
Benchmark  Size

VGG-16 [45]  1.38 x 108 params, 3.09 x 10'? Ops, variable batch
ResNet-152 [46]  6.03 x 107 params, 2.26 x 100 Ops, variable batch

K-NN 262,144 samples, 512 dimensions, 128 categories

K-Means 262,144 samples, 512 dimensions, 128 categories

LVQ 262,144 samples, 512 dimensions, 128 categories

SVM 262,144 samples, 512 dimensions, 128 categories

MATMUL 32,768 orders, square matrix
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matrix running at 1 GHz, reaching peak performance of 477 GOPs/s.
Cambricon-F1 is a Cambricon-F accelerating card at desktop scale
with a peak performance of 14.9 Top/s, similar characteristics to
1080Ti (10.6 Top/s). Cambricon-F1 has a three-level architecture of
Card, FMP, and Core in each level from top to bottom, see Table 5.
Cambricon-F1 has one FMP on-chip and that has 32 cores inside.

To obtain the hardware characteristics, we implemented the
Cambricon-F designs (up to chip level) in RTL and synthesize,
place, and route using Synopsys toolchain under TSMC 45 nm
technology. Fortunately, Cambricon-F is a fractal architecture built
iteratively, we are able to estimate the hundreds millimeter square
design using smaller pieces following bottom-up design philosophy.
Due to the extreme long hardware emulation time and large design,
we carefully build a simulator in C++ to get the performance.
For energy costs, we dump data movements from our simulator
and estimate memory costs with DESTINY [49], other parts are
estimated based on our layout characteristics.

6 EXPERIMENTAL RESULTS

We first present the main characteristics of Cambricon-F instances,
then present the performance and energy results when comparing
against GPUs and accelerators. The experimental results are shown
in Figure 12, where we adopt the Roofline Model [50] to illustrate
the efficiency and bottleneck of the systems.

Hardware Characteristics. The layout of a Core, a FMP
(same as a Cambricon-F1 Chip) and a Cambricon-F100 Chip are
shown in Figure 13. In Table 6, we present the detailed hardware
characteristics of the chip in Cambricon-F100 and Cambricon-F1.
Cambricon-F1 occupies 29.21mm? area, consuming a power of
4.94W, where each core has an area cost of 0.43mm2, a power of
75.18mW at 45nm. Cambricon-F100, which is a 8-chip server
having 2048 cores in total, has an area of 415 mm? in total,
consuming a power of 42.87W at 45nm. It can be observed that
Cambricon-F favors large memory.

In Table 7, we also compare Cambricon-F chips with GPUs
and accelerators. It can be observed that Cambricon-F1 chip has
the highest power efficiency and area efficiency, 3.02 Tops/W and
0.51 Tops/mm?. Cambricon-F100 chip achieves the comparable
area efficiency, but slightly lower power efficiency when compared
against Google TPU [40]. While considering the entire card where
32 GB DRAM is included in each Cambricon-F Computing Card,
Cambricon-F1 has a 40.57% more peak performance, but with
45.11% power cost of 1080Ti GPU card and Cambricon-F100

TABLE 5
Specification of Cambricon-F instances.

Cambricon-F100 LO L1 L2 L3 L4
Name Server  Card Chip FMP  Core

# FFUs 4 2 8 32 -

# LFUs 1 0 16 16 -

Local Storage 1TB 32GB  256MB 8MB 256KB
Bandwidth (GB/s) 128 512 512 512 80
Peak Perf.(TOPs/sec) 956 238 119 14.9 0.46
Cambricon-F1 LO L1 L2
Name Card FMP  Core

# FFUs 1 32 -

# LFUs 0 16 -

Local Storage 32GB 8§MB 256KB
Bandwidth (GB/s) 512 512 80
Peak Perf.(TOPs/sec) 14.9 14.9 0.46
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Computing Card has a 1.90x more peak performance with 67.34%
power cost of a V100-SXM2 GPU card.

Cambricon-F1 vs. 1080Ti. As shown in Figure 12 (a),
Cambricon-F1 has attained a 5.14x performance and 87.3% lower
traffic on average when compared to 1080Ti. An Cambricon-F1
Computing Card consumes an average of an 83.1 Watt power for
all benchmarks, and 1080Ti consumes an average of 199.9 Watt.
The attained performance of Cambricon-F1 is from 1.42x to 659x
higher than 1080Ti. Note that Cambricon-F1 has a 40.6% higher
peak performance and a 5.8% higher root bandwidth relatively to
1080Ti.

The main reason for that is because of the large on-chip
storage. While in 1080Ti, the programmable nodes under the
root memory, i.e., CUDA cores, have very limited local storage
space (96KB shared memory vs. 8MB L1 local storage); thus, the
operational intensity is bounded. The operational intensity of all
seven benchmarks on Cambricon-F1 has reached the ridge point
of the roofline, indicating that the root bandwidth will not be the
performance bottleneck of Cambricon-F1. Thus, Cambricon-F1 has
attained 57.4%-99.8%, 88.9% on average of peak performance on
all benchmarks.

Cambricon-F100 vs. DGX-1. As shown in Figure 12 (b),
Cambricon-F100 has a 51.9% higher root memory bandwidth
compared to DGX-1, while the peak performance of Cambricon-
F100 is 4.4% lower than DGX-1. For power consumption, four
Cambricon-F100 Computing Cards consume an average of 614.5
Watt at the total, and eight V100-SXM2 GPU cards consume an
average of 1986.5 Watt. Overall, Cambricon-F100 have attained
1.74x-8.58x performance, 2.82x on average, compared to DGX-1.

On deep learning tasks, Cambricon-F100 improved the opera-

TABLE 6
Cambricon-F layout characteristics.

Component Area(umZ) (%) Power(mW) (%)
CORE 426,348 75.18

Memory 201,588 (47.28%) 16.15 (21.48%)
Combinational 176,228 (41.33%) 23.74  (31.58%)
Registers 42248  (9.91%) 27.38 (36.42%)
Others 6,284  (1.47%) 8.38 (11.14%)
CHIP

Cambricon-F1 29,206,289 4,935.32
Cambricon-F100 415,109,951 42,873.06

TABLE 7

Hardware characteristics comparison.

Chip Cam-FI Cam-F100 1080Ti V100 DaDN [37] TPU [40]
ISA type FISA FISA SIMD SIMD VLIW CISC
Technology 45nm 45nm 16nm 12nm 28nm 28nm
Type Cam-F  Cam-F  GPU GPU ASIC ASIC
Memory type eDRAM eDRAM SRAM SRAM eDRAM SRAM
Memory Size 16MB 448MB 12.8MB 33.5MB 36MB 28 MB
Peak Perf. (Tops) 14.9 119 10.6 125 5.58 92
Area (mm?) 29 415 471 815 67 (<331
Power (W) 4.94 42.87 - - 15.97 40
Power efficiency 3.02 2.78 - 0.35 23
(Tops/W)

Area  efficiency 0.51 0.29 0.02 0.15 0.08 0.28
(Tops/mm?)

Card Cam-FI Cam-F100 1080Ti V100 DaDN TPU
Dies 1 2 1 1 - 1
DRAM size 32GB  32GB 11GB 16 GB - 8GB
Peak Perf. (Tops) 14.9 238 10.6 125 - 92
Power (W) 90.19 167.22 19990 24832 - -
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Fig. 12. Roofline Cambricon-Fs compared to GPUs. (a) Cambricon-F1 and 1080Ti. (b) Cambricon-F100 and DGX-1.

tional intensity by 37% and 33% for VGG-16 and RESNET-152,
respectively, when compared to DGX-1. The operational intensity
benefits from greater sub-problem scale, i.e. from larger batch size
used. GPU performance does not always increase with batch size,
which caused the best batch size choosing on GPU is smaller than
on Cambricon-F. The broadcasting optimization of Cambricon-F
improved operational intensity even further.

On machine learning tasks, DGX-1 achieves up to 85x higher
operation intensity when compared Cambricon-F100. This differ-
ence is caused by the implicit management of intermediate memory
in Cambricon-F. In Cambricon-F, programmers do not manipulate
on memories except the main memory explicitly, Cambricon-F
will write the intermediate result after each instruction back to the
root once the tensor transposition mechanics failed to forward
the data, which caused the traffic on root raised. For control
intensive workloads as ML tasks in the benchmark, control flow
always breaks the FISA pipeline and data forwarding, forcing the
intermediate results written back to the root. K-NN and SVM
have a relatively complete essential computation block. For K-NN,
calculating distances between each pair of samples constituted
> 95% of the total run-time, and for SVM, the kernel between
each pair of samples, which is sufficiently operation-intensive, is
calculated in each iteration. Thus, their operational intensity on
Cambricon-F is less affected. K-MEANS and LVQ are also iterative
algorithms as SVM is, but they do not have an operation-intensive
computation block in each iteration, thus their operational intensity
is more affected, which heavily limited the performance attainable.
Moreover, the significantly smaller granularities of operations on
these two benchmarks may be insufficient to hide the control latency
of Cambricon-F nodes, resulting in an even worse performance on

Local Storage

256 MB

Fig. 13. Layout of Cambricon-Fs. Left: Leaf Core. Mid: FMP(Cambricon-
F1 Chip). Right: Cambricon-F100 Chip.

Cambricon-F100 compared to Cambricon-F1. With such a better
operational intensity, DGX-1 has still shown a significant gap
between attained performance and the roofline, since the bottleneck
of GPU system is between graphic memories and chips. For K-
MEANS and LVQ, GPU suffers from the control flow either and
showing an even worse performance.

7 CAMBRICON-FR: FRACTAL COMPUTERS WITH A
RECONFIGURABLE FISA

In this section, we propose Cambricon-FR, which enhanced the
Cambricon-F machine learning computers to flexibly and efficiently
support all the operations with a reconfigurable fractal instruction
set architecture (RFISA).

7.1 Ineffectiveness in FISA

While Cambricon-F is able to achieve high programming efficiency
with maintained higher performance and energy efficiency, it
still suffers from ineffectiveness when executing new operations
that are not covered in the FISA set. In the FISA set (c.f,,
Section 3.2), several important operations from popular machine
learning techniques are contained as FISA primitives directly for
fast and efficient implementation. But other operations that are not
FISA primitives can only be emulated through combining low-level
operations and FISA primitives, which could be very ineffective in
realization.

From the perspective of complexity, we can define two types
of ineffectiveness in Cambricon-F, i.e., computation ineffectiveness
(time complexity) and communication ineffectiveness (communi-
cation complexity). More precisely, regarding the computation
ineffective, for a fractal operation which is effective on a fractal
machine M, its obtained speedup ratio r. is irrelevant to the
operation granularity G, where the r, is defined as the ratio of
operation compute time on the leaf node of M and on the whole
machine M, i.e., 7c = T/ Tjeas node- For an operation is ineffective
on a fractal machine, its achieved speedup ratio is asymptotically
related to the granularity G, which means its computational
complexity could become worse due to the non-direct support
in FISA. For example, TopK, an operation not in FISA, could be
very ineffective on Cambricon-F machines. As TopK can be support
indirectly through the combination of SORT1D and MERGE1D



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

primitives in FISA, solving a TopK(n,K) is O(nlogn) complexity
in time. However, running a leaf node, it becomes O(nlogK)
complexity in time.

Regarding the communication ineffectiveness, for a fractal
operation which is effective on a fractal machine M, its data traffic
ratio ry is irrelevant to the operation granularity G, where the
rq is defined as the ratio of data communications required to
execute on the whole machine M and on the leaf node of M, i.e.,
4 = D /Dieaf node Where D denotes data traffics. For example,
Conv3D, which is a convolutional operation with a pair of additional
spatial dimensions D and Kp, could be very communication
ineffective if achieving indirectly using Cv2D primitive in FISA.
While the time complexity remains the same, the lower-bound of
data traffic of such communication ineffective realization could be
O(Kp) times higher than direct Conv3D primitive, as there will be
at least Kp — 1 partial sum of results created in the root memory as
intermediate data.

The two types of ineffectiveness at root are caused by the

indirect support in FISA. For those ineffective operations, their
execution on Cambricon-F machines are heavily limited by
combining fragmented low-level instructions, which have to be
executed sequentially. Therefore, to address the ineffectiveness
issues in fractal machines, FISA should be able to support as many
as possible operations. However, directly integrated all the possible
operations is unrealistic and costly. Hence the question is, how to
break the constraints of FISA and enable the fractal execution of
any fractal operations on a fractal machine flexibly?
Our solution. To address the ineffectiveness issue, we propose a
reconfigurable FISA (RFISA) for fractal machines, which allows
user-defined fractal instructions and user-specified executing proce-
dures. Therefore, the fragmented low-level instructions are fused
again in RFISA, enabling effective support for those ineffective
operations. In order to realize a fractal machine for RFISA, several
challenges must be addressed:

o FISA. The RFISA needs to be flexible but still keep the
programming productivity.

« Architectural Support. The corresponding architecture should
be able to support RFISA but still keep the homogeneous
characteristic of control logic in each node, so as to maintain
the fractal feature.

e Programming Paradigm. A special designed programming
model and a language is required, which should unify the
programming of both Sequential Decomposer and Parallel
Decomposer/Reduction Controller.

7.2 Reconfigurable Fractal Instruction Set Architecture
Figure 14 compares the FISA, RFISA, and traditional ISAs (e.g.,
VLIW and RISC) in terms of the abstract level (which is decisive
to productivity) and flexibility.

The topmost FISA can provide excellent productivity since it
directly maps high-level primitives (e.g., convolution and sorting)
to fractal instructions. However, other operations (which cannot
be directly mapped to one single pre-defined fractal instruction)
need to be programmed with multiple sequentially executed fractal
instructions for flexibility. As the original operation is executed
with multiple FISA instruction in sequence, all other nodes, except
for the root node, are not aware of what the original operations
is. This leads to the waste of computations and lots of chances
for data reuse. Moreover, nowadays machine learning algorithms
are evolving drastically with newly emerged high-level primitives.
Once current fractal instructions in FISA cannot emulate a new
operation, the only way to support that operation is to update the
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Fig. 14. The comparison of FISA, RFISA, VLIW, and RISC in terms of
abstraction and flexibility. The RFISA can achieve both good productivity
and flexibility.

instruction set, design and manufacture new machines with an
updated instruction set.

RFISA dominates the FISA and VLIW/RISC in Figure 14,
in terms of productivity and flexibility. In contrast to the FISA,
RFISA does not provide native fractal instructions any more.
Instead, a set of local instructions (same as in the FISA) are
provided as the basic building blocks. Table 8 lists examples of
local instructions. Based on such local instructions, for a new
operation, programmers are able to build a corresponding new
fractal instruction on demand with essential hardware supports
(which will be elaborated in Section 7.3). Therefore, the desired
operation is mapped to one single fractal instruction, instead of
multiple sequentially executed fractal instructions in FISA, so
as to improve the efficiency. In contrast to the VLIW and RISC
instruction sets, which are more closer to the native computation
ability of underlying hardware with low level of abstraction!,
RFISA can improve the productivity as high-level primitives can be
expressed as one single fractal instruction. Moreover, the flexibility
of RFISA is even better than VLIW/RISC for two aspects. First,
the diversity of local instruction (i.e., four categories including
data transfer, computational, logical and miscellaneous all operates
with both vectors and scalars) offers the opportunity to compose
various complicated operations. Second, from the programmers’
perspective, a reconfigurable and customized instruction set can
extend existing instruction set without updating the hardware,
which is very flexible for adapting to different applications.

In practice, the original fractal instructions provided in FISA
can also be pre-configured to RFISA, so that a machine with RFISA
can be fully compatible with the programs of FISA.

7.3 Cambricon-FR Architecture

In this section, we present the architecture support for RFISA,
i.e., the Cambricon-FR machine learning computers. Over-
all, Cambricon-FR maintains almost the same architecture as
Cambricon-F, except the controller modules where the controller
in Cambricon-FR is reconfigurable. In Figure 15, we show the
two controllers in both Cambricon-F and Cambricon-FR. The
controller in Cambricon-F contains a Sequential Decomposer (SD),
a Parallel Decomposer (PD), a Demotion Decoder (DD), and a
Reduction Controller (RC). Cambricon-FR replaces the SD, PD,
and RC with a new module (a reconfigurable DEC). The DEC
controls the execution of user-defined fractal instructions following
the pre-loaded user-specified executing procedures in its storage.

1. For example, many RISC instructions are directly mapping of native
functional units (e.g., ALU and FPU).
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Fig. 15. Controller structure, Left: Cambricon-F. Right: Cambricon-FR.

Therefore, with the key component of DEC, Cambricon-FR is
flexible to support any fractal operation effectively.

DEC. Figure 15 illustrates the detailed structure of DEC
modules in Cambricon-FR and how it can be configured to
perform the functionalities of SD and PD in Cambricon-F. The
DEC contains a ROM, two stacks (PDSTACK and SDSTACK),
and a controller (DECC). The ROM is used to store the user-
specified executing procedures to be executed by DECC and the
two data stacks are used to preserve the states when executing
those procedures. The DEC deploys a double-thread executing
model, where one thread performs the sequential decomposing (SD
functionality) and the other performs the parallel decomposing (PD
functionality). With a pre-defined thread priority, the DEC is able
to perform one certain decomposition over the other. Additionally,
since only the decomposing strategies are different in sequential
decomposing and parallel decomposing, a user-specified executing
procedure has many parts shared for the two threads, thus reducing
the program size in ROM largely.

Dynamic control. One possible situation in Cambricon-FR
is that some instructions need data only decided in runtime, i.e.,
dynamic control. For example, when decomposing sparse data into
equal pieces where each piece contains roughly same number of
non-zero data, POPCNT (pop count) instruction will be applied to
find the exact size of each piece. As such sparse information can
only be obtained in runtime, POPCNT instruction needs dynamic
control support. Cambricon-FR supports such dynamic control
by allowing a memory address field of some RFISA instructions.
And the DEC applies a scoreboard mechanism to replace the
fields with contents from corresponding memory addresses before
every sequential decomposition. Hence the sub-instructions after
sequential decomposition can be directly sent to sub-nodes in
Cambricon-FR without requirement of dynamic control support.
7.4 Programming
DEFRACTALK programming model. To ease the burden of

programming user-specified execution procedures for user-defined
fractal instructions, we propose DEFRACTALK (Decomposing

TABLE 8
Examples of Local Instructions

Type  Operation Name
Data Transfer ~ Explicit Tensor Move tmove
Computational ~ Element-wise Non-linear Transform veltw
Add (vector, scalar, mixture) vadd, sadd, vsadd
Horizontal Maximum / Logical ANY  hmax
Matrix Multiply mmul
Logical  Logical Exclusive-OR VXOr, SXOr
Comparison Greater Than vgt, sgt
Miscellaneous  Generate Random Vector vrng
Population Count vpopent
Merge Sorted Lists vmerge
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Programmer DeFracTalk
Declare format of inst. _— Provide instances of inst.
Define different composition ways ——  Choose a decomposition way
Define th f .
S € range o —_— Choose a pivot

decomposition pivot

Generate sub-inst. and
R

Provide template of sub-inst. :
Decompose recursively

Fig. 16. DEFRACTALK programming flow.

Fractal Talk), a domain-specific programming model for pro-
gramming the Cambricon-FR DEC. The DEFRACTALK helps
the programmers to define the execution flow of user-defined
instructions but without bothering the programmers with too many
details about the machine. In Figure 16, we show the programming
flow of DEFRACTALK , where the programmers perform the left
part light-weight tasks to tell the DEC how to perform the decom-
posing process. Specifically, the programmers declare the form of
instruction with name and parameters where the DEFRACTALK
provides instruction instances with the declared name of parameters.
The programmers define several decomposition options (opt) and
the DEFRACTALK tries its best to choose a decomposition option
based on the hardware characteristics. The programmers define
the range of pivot value which is used to decide the granularity of
decomposed sub-instructions and the DEFRACTALK finds the best
pivot value based on the hardware characteristics. The programmers
provide a piece of imperative code which defines how to write
out the decomposed sub-instructions based on the pivot value and
instruction arguments given by the DEFRACTALK . Finally, the
DEFRACTALK is able to generate sub-instructions for DEC to
decompose the user-defined instructions recursively.

The key feature of DEFRACTALK is that it simplifies the
programming and hardware design by providing an interaction
interface to separate the definition and the specific decomposing
process, see Figure 16. For example, in the programming, pro-
grammers leave two key decisions, i.e., choosing the opt value and
choosing the pivot value, to be made by DEFRACTALK based on
the machine characteristics. In such way, DEFRACTALK achieves
three the key advantages:

« Independence of hardware configuration. As the decompo-
sition is largely decided by DEFRACTALK based on specific
machine configuration information, programmers are able to
define the same instruction but with different decomposition for
different Cambricon-FR machines.

« Independence of instruction granularity. As the two key
parameters are decided by the DEFRACTALK with regard to
the machine characteristics, programmers are unaware of the
detailed decomposition on internal nodes, thus providing an
instruction granularity-independent programming experience.

« Independence of SD or PD. As the DEC is configured to
perform the functionalities of SD and PD, the two types of
decomposition run in a double-thread mode. Thus, programmers
are unaware of which decomposing process is running.
DEFRACTALK Language. We propose a specialized pro-

gramming language for DEFRACTALK programming, i.e., the

DEFRACTAL (DeFraclalk Language). In order to support the

future emerging fractal operations, we design the DEFRACTAL
strictly following the definition of fractal operation (given in
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Section 2.2) and DEFRACTALK . We designed the syntax of
DEFRACTAL based on the C programming language. A part of
syntax rules are listed below:

(translation-unit) = (rfisa-def) (translation-unit) optional

(rfisa-def) ::= (rfisa-opcode) (rfisa-param-list) { {opt-def-list) }
(pivot-decl) ::= (pivot) : [ (lower) , (upper) 1
(opt-def) := (opt-specifier) (pivot-decl)optional (comp-stmt)

(stmt) ::= (var-decl) |
(sub-inst-stmt)

(comp-stmt) | (frac-stmt) | (reduce-stmt) |

(frac-stmt) := frac (expr) : {expr) (stmt)
(reduce-stmt) ::= reduce (stmt)
(sub-inst-stmt) ::= (rfisa-opcode) {(expr-list) 3

The rfisa-def defines the instruction name (rfisa-opcode),
parameters (rfisa-param-list), and a list of options (opt-def) where
each opt-def defines a decomposition option. In practice, there
are opts that do not require a pivot to be defined, especially
the last decomposition which generates all local instructions.
opt-def contains a compound statement that corresponds to the
imperative code piece defining the sub-instructions. There are
three new statement types: frac-stmt, reduce-stmt and sub-inst-stmt,
correspond to the target operator f(-), the retrieving operator g(-)
as defined in Section 2.2, and the sub-instruction actually written
out. With these correspondence, an operation can be defined in
DEFRACTAL as long as it meets the formal definition of fractal
operation. In addition, DEFRACTAL provided opt-specifier to
specify whether the current defining opt is suitable in the context
of specific decomposing phases, although DEFRACTALK does not
differentiate SD and PD. This is added for performance optimizing
and simplicity of compiler design.

In Figure 17, we show the programming in DEFRACTAL using
the definition of convolution instruction Cv2D as an example.
The program declares the fractal instruction CV2D, the leaf
decomposition (a local instruction conv in this example) and six
opts decomposing the instruction along the dimension of batch,
channel-out, height, width and channel-in. A special case is for
channel-in which is separated into two opts for SD and PD, since
the partial result is placed on the static segment when running in
SD, but placed on the recycle segment when running in PD. In SD
the local instruction add is serving as a sequential sub-instruction,
while in PD it becomes a reduction instruction.

7.5 Evaluation
7.5.1  Methodology

Benchmarks. In Table 9, we show all benchmarks we used to
evaluate Cambricon-FR instances. We select six fractal operations
that are not natively supported on Cambricon-F as benchmarks,
including 3D Convolution (Conv3D), Deconvolution (Deconv),
Depthwise Convolution (DwiseConv), General Matrix Multiply
(GEMM), Sparse Matrix Multiply Matrix (SPMM) and TopK, to
evaluate the inefficiency issue. We also select five machine-learning
applications which involve these operations, including C3D [51],
FCN [52], Sparse AlexNet [3], MobileNet-V2 [53] and k-Nearest
Neighbors, to evaluate the impact on overall applications.

GPUs. We use the same GPUs as baseline, i.e. Nvidia DGX-
1 and Nvidia GeForce GTX-1080Ti, see Section 5. To evaluate
both performance and programming productivity accurately on
GPU systems, we write programs of benchmarks in plain CUDA
C++ without calling computation libraries. On DGX-1, we write
plain CUDA kernel functions utilizing TensorCore when possible.
We report the maximum possible throughput as the performance
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Cv2D in DeFracTaL

CV2D WT[CO,KY,KX,CI], IN[BT,YI,XI,CI], OUT[BT,Y0,X0,C0] {

opt(r,p) bt : [1, BT] {
static WT;
frac bt : BT {

CV2D WT, IN[BT:...bt:bt,YI,XI,CI], OUT[BT:...bt:bt,Y¥0,X0,C0];
}
} opt co : [1, col {
static IN;
frac co : CO {
CV2D WT[CO:...co:co,KY,KX,CI], IN, OUT[BT,Y0,X0,CO:...co:col;
}
opt(r,p) yo :
static WT;
frac yo : YO {
CV2D WT, IN[BT,YI:...yo:yo+KY-1,XI,CI], OUT[BT,YO:...yo:yo,X0,C0];
}
opt(r,p) xo :
static WT;
frac xo : X0 {
CV2D WT, IN[BT,YI,XI:...xo:xo+KX-1,CI], OUT[BT,YO,X0:...x0:x0,C0];
}
opt(s,r) ci : [1, CI] {
static par[BT,Y0,X0,C0], res[BT,Y0,X0,CO0];
frac ci : CI {
CV2D WT[CO,KY,KX,CI:...ci:ci], IN[BT,YI,XI,CI:...ci:ci], par;
add res, par, res;
}
0UT = res;
opt(p) ci : [1, C€I] {
frac ci : CI {
recycle par [BT,Y0,X0,C0];
CV2D WT[CO,KY,KX,CI:...ci:ci], IN[BT,YI,XI,CI:...ci:ci], par;
} reduce add par..., OUT;
opt(1) {
conv WT, IN, OUT, CI, CO, KX, KY, X0, YO, BT;

o

[KY, Y0l {

e

[kx, x0] {

[

()

o

Fig. 17. A DEFRACTAL program defining Cv2D.

metric by testing on various batch size setup. Lines of Source Code
(SLoC) are used as the quantitative metrics, which are including
minimum required codes to run the computation, excluding data
preprocessing, any comments, blank lines or dead codes.
Cambricon-Fs and Cambricon-FRs. We also use the same
configuration for Cambricon-Fs and Cambricon-FRs as described
in Section 5. Cambricon-FR1 and Cambricon-FR100 have the same
configuration as Cambricon-F1 and Cambricon-F100 respectively,
despite the different controller structures. We write the program
in FISA/RFISA instructions, and also DEFRACTAL specifying
new operations on Cambricon-FRs. Since programs can be ported
without any adjustment between fractal machines, the codes on
Cambricon-F1 and Cambricon-F100 are shared, so does Cambricon-
FR1 and Cambricon-FR100. Therefore, we report SLoCs for
Cambricon-F and Cambricon-FR, not the specific instances. We
build C++ simulator to simulate these programs to obtain perfor-
mance. The C++ simulator is event-driven, behavioral, modeled
the execution on the hierarchical pipeline, which is sufficient to

TABLE 9
Benchmarks.
Benchmark  Dataset / Size Configuration
CONV3D  16x56x56x64, K=3
DECONV  224x224x256, K=3, S=2
DWISECONV 224 x224x256, K=3
GEMM  32,768x32,768x32,768
SPMM  32,768x32,768x32,768, 60% sparse ratio (left)
TopK  1GB data, K =512

C3D [51] UCFI101 [54] dataset
FCN [52] PASCAL VOC2012 [55] dataset

SPARSE ALEXNET [3]
MOBILENET-V?2 [53]
K-NN

ImageNet [41] dataset
ImageNet dataset
MNIST [56] dataset, K =5
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Fig. 18. Speed up fractal machines compared to GPU. Top: Cambricon-
F1 versus Cambricon-FR1. Bottom: Cambricon-F100 versus Cambricon-
FR100.

differentiate Cambricon-Fs and Cambricon-FRs.

7.5.2 Experimental Results

Performance. The performance comparison is shown in Figure 18.
For the desktop-scale fractal machines, Cambricon-FR1 runs
1.96x faster than Cambricon-F1 on average, and for the server-
scale fractal machines, Cambricon-FR100 runs 2.49x faster than
Cambricon-F100 on average. The result shows that RFISA breaks
the obstruction lying between split FISA instructions, and achieved
remarkable performance improvement on most of the benchmarks.

Depthwise convolution achieves a 5.72x higher performance
on Cambricon-FR1 versus Cambricon-F1, and a 13.63x higher
performance on Cambricon-FR100 versus Cambricon-F100. The
reason is that without RFISA, depthwise convolution is built upon
massive element-wise multiplication, which has a poor data locality;
with a user-defined depthwise convolution instruction, the data
locality exploited in the convolutional window can be preserved
through every memory hierarchies. Since depthwise convolution is
improved greatly, MobileNet-V2 which is mainly constructed from
depthwise and pointwise convolutions also benefits a lot, resulting
in a 2.90x/5.30x performance gain.

Conv3D achieves a 3.60x higher performance on Cambricon-
FR100 versus Cambricon-F100, but there are only negligible
improvements achieved on Cambricon-FR1 versus Cambricon-
F1. As analysed in Section 7.1, Conv3D is communication
ineffective on Cambricon-F and have a Kp times higher lower-
bound of communication. But on a smaller-scaled machine as
Cambricon-FR1, the communication is already bounded by the
memory capacity of the fractal nodes, thus the communication
ineffectiveness has been hidden. Similar effects can be observed
also on C3D and GEMM.

In contrast, TopK achieves an 18.88x higher performance
on Cambricon-FR1 versus Cambricon-F1, but only 2.17x higher
on Cambricon-FR100 versus Cambricon-F100. As analysed in
Section 7.1, TopK is computation ineffective on Cambricon-F
and have a worse time complexity. Cambricon-FR can reduce
computation operations required in TopK dramatically, but for
communications, the reduction is not as much. On a larger-scaled
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Fig. 19. Programming Productivity of Cambricon-F, Cambricon-FR and
GPUs quantitated in SLoC.

machine as Cambricon-FR100, the computation power is much
higher but the bandwidth is limited, thus the effect on reducing
computation operations cannot be clearly manifested.

Programming productivity. Programming productivity can be
measured from the perspective of algorithm programmers or system
software developers (including compiler). Regarding the practition-
ers, they can only write one program for multiple Cambricon-
F/Cambricon-FR machines. The required programs are reduced
from N to 1, significantly improved programming productivity. And
for programming a certain program, Cambricon-F/Cambricon-FR
provides a similar programming experience as the programming
framework (e.g. TensorFlow, PyTorch, etc.). In Figure 19, we report
the SLoC to quantitatively measure the programming productivity
of algorithm programmers for one certain program. Compared
to DGX-1 and 1080Ti, Cambricon-FR saves SLoC with a factor
of 6.35, 6.06 on average, respectively, showing the significant
improvement of programming productivity. And for N Cambrion-
F/Cambricon-FR machines, the programming productivity can be
further improved by N times, as non-fractal machines would have
to write different programs for high efficiency.

Regarding the system software developers, they program to
provide a programming environment to algorithm programmers.
For Cambricon-FR machines, the DEFRACTAL code is used to
define new RFISA instructions, thus it can be treated as the
system software programming. Since Cambricon-FR requires
additional DEFRACTAL codes, the SLoC of Cambricon-F is less
than Cambricon-FR, with a factor of 4.70 on average. However,
once the DEFRACTAL codes are written, they can be reused
between applications. If DEFRACTAL codes are reused, they can
improve the programming productivities for Cambricon-FR over
Cambricon-F. The average length of DEFRACTAL codes is 81.1
lines, and RFISA codes are shorter than FISA codes with a factor
of 1.30, with the help of newly defined instructions.

8 RELATED WORK

Machine learning accelerators. Due to the end of Moore’s Law
and Dennard Scaling, domain-specific accelerators designed for
machine learning, especially DNNs, have become hot topics of
computer architecture community in recent years. Many machine
learning workloads have high intrinsic parallelism to be exploited
by specific architecture. Most recent works are included in [57],
[58], [59], [60], [61], [62], [63].

Yunji Chen et al. proposed the DianNao family of machine
learning accelerators [22], [23], [37], [38], [39], which minimizes
memory accesses to achieve both high performance and low
power consumption. Yu-Hsin Chen et al. proposed Eyeriss [24]
accelerator for deep CNNs which adopts a reconfigurable data
path and running-length compression to skip zeros in the data,
both to minimize memory access. Google’s TPU [40] adopts a
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systolic array of PEs as its computing component to eliminate the
requirement of local memory on PEs. Many previous works have
shown that minimizing memory accesses is essential for machine
learning accelerators, but have not quantized the effects of their
efforts to reduce memory accesses.

Machine learning computers. Akhil Arunkumar et al. pro-
posed MCM-GPU [64] to continue the scalability of monolithic
GPU. By designing memory system and integration, MCM-GPU
proposed a multi-chip module of GPUs with interconnections
and caches showing that the performance of a multilayered GPU
system can be comparable to a similarly sized, monolithic GPU.
Both MCM-GPU and Cambricon-F provided a user-transparent
extension to system scalability. Compared to Cambricon-F100
which also has a similar module—a computing card composing two
chips, the control of MCM-GPU is fine-grained and heterogeneous
while Cambricon-F100 remained homogeneous.

As the state-of-the-art GPU system, DGX-1 [15] was originally
launched by NVIDIA in 2016 featuring eight NVIDIA Tesla P100
GPUs, then refreshed with new NVIDIA Tesla V100 GPUs which
are particularly designed for deep learning acceleration. Compared
to Cambricon-F100, the eight GPUs in DGX-1 are connected in a
hybrid cube mesh network by NVLink, while the interconnection
of Cambricon-F100 nodes is limited within parent-to-children
paths, forming an H-tree topology. Building interconnection among
sibling nodes for Cambricon-F may further improve performance,
we left this exploration for future works.

ISA for heterogeneous systems. Recent research also ad-
dresses the programming productivity issue with new ISA. Venkat
et al. [65] proposed Composite-ISA which constitutes a composite
ISA superset with multi-ISA for heterogeneous multicores, while
Cambricon-F uses a unified ISA for multi-systems with different

scale
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In this paper, we propose Cambricon-F, machine learning comput-
ers with fractal von Neumann architecture and the same ISA,
aiming to address the emerged critical issue that hinders the
deployment of machine learning computers, i.e., programming
productivity, including both programming itself and software stack
development. We thoroughly analyze machine learning techniques
for fractal computation and solve the three different types of fractal
operation in our Cambricon-F architecture design. Cambricon-
F features the fractal computing that iteratively decomposes
an instruction on it into several instructions on low-layer sub-
nodes. Thus, achieving easy-programming and high-efficiency
simultaneously. Our results show that Cambricon-F achieves 5.14x,
2.82x better performance, 11.39x, 8.37x better efficiency on
average, with 93.8%, 74.5% smaller area costs when comparing
against 1080Ti and V100 GPU, respectively. With the unified ISA
and code for high programming productivity, Cambricon-F is also
able to achieve better performance and efficiency. Further, we
propose Cambricon-FR, featured with a reconfigurable FISA, to
flexibly and efficiently support all fractal operations. Our results
show that the two Cambricon-FR instances achieve 1.96x, 2.49x
better performance on average when comparing against Cambricon-
F instances. Cambricon-FRs are also able to save the line of codes
with a factor 5.83 on average compared to selected GPUs, thus
significantly improving the programming productivity.
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