
Cambricon-F: Machine Learning Computers with Fractal
von Neumann Architecture

Yongwei Zhao1,2,3, Zidong Du1,3, Qi Guo1,3, Shaoli Liu1,3, Ling Li4, Zhiwei Xu1,2, Tianshi Chen1,3, and Yunji Chen�1,2

1SKL of Computer Architecture, Institute of Computing Technology, CAS

2University of Chinese Academy of Sciences 3Cambricon Tech. Ltd 4Institute of Software, CAS

{zhaoyongwei, duzidong, guoqi, liushaoli, zxu, chentianshi, cyj}@ict.ac.cn; liling@iscas.ac.cn

ABSTRACT
Machine learning techniques are pervasive tools for emerging com-
mercial applications and many dedicated machine learning comput-
ers on different scales have been deployed in embedded devices,
servers, and data centers. Currently, most machine learning com-
puter architectures still focus on optimizing performance and energy
efficiency instead of programming productivity. However, with the
fast development in silicon technology, programming productivity,
including programming itself and software stack development, be-
comes the vital reason instead of performance and power efficiency
that hinders the application of machine learning computers.

In this paper, we propose Cambricon-F, which is a series of ho-
mogeneous, sequential, multi-layer, layer-similar, machine learning
computers with the same ISA. A Cambricon-F machine has a fractal
von Neumann architecture to iteratively manage its components: it
is with von Neumann architecture and its processing components
(sub-nodes) are still Cambricon-F machines with von Neumann ar-
chitecture and the same ISA. Since different Cambricon-F instances
with different scales can share the same software stack on their
common ISA, Cambricon-Fs can significantly improve the program-
ming productivity. Moreover, we address four major challenges
in Cambricon-F architecture design, which allow Cambricon-F to
achieve a high efficiency. We implement two Cambricon-F instances
at different scales, i.e., Cambricon-F100 and Cambricon-F1. Com-
pared to GPU based machines (DGX-1 and 1080Ti), Cambricon-F
instances achieve 2.82x, 5.14x better performance, 8.37x, 11.39x
better efficiency on average, with 74.5%, 93.8% smaller area costs,
respectively.

1. INTRODUCTION
Machine learning techniques are pervasive tools for emerging

commercial applications, including image recognition [1–3], speech

� Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 ACM. ISBN 978-1-4503-6669-4/19/06. . . $15.00

DOI: https://doi.org/10.1145/3307650.3322226

P
o

w
er

 E
ff

ic
ie

n
cy

 (
G

O
P

S
/W

)

2012 2013 2014 2015 2016 2017 2018

10^2

10^3

10^4

10^5

10^6

Figure 1: Power efficiency of recent proposed machine learning
accelerators [19–25].

recognition [4, 5], face cognition [6, 7], video analysis [8, 9], ad-
vertisement recommendation [10], and games [11, 12]. In recent
years, many dedicated machine learning computers on different
scales have been deployed in embedded devices, servers, and data
centers. For example, Huawei Mate10 and P20 cellphones inte-
grated Cambricon-1A machine learning processor core [13]. Apple
iPhone X cellphones also integrated a machine learning subsystem
to identify faces of users [14]. NVIDIA produced DGX-1 and DGX-
2 machine learning computers based on NVIDIA GPU [15, 16].
Google announced a machine learning computer with 100 Petaflops
peak performance based on TPU-3 chips [17]. Recently, IBM an-
nounced Summit, which is a machine learning supercomputer with
9216 POWER9 CPUs and 27648 NVIDIA V100 GPUs [18].

Currently, most machine learning computer architectures still
focus on optimizing performance and energy efficiency instead of
programming productivity. In Figure 1, we try our best effort to sum-
marize the power efficiencies of the most efficient machine learning
accelerators proposed in the very year from 2012 to 2018. Obvi-
ously, the power efficiency keeps increasing at a dramatic speed, i.e.,
3.2x each year. Neuflow achieves 230GOPS/W with IBM 45 nm
technology in 2012 [19]. DianNao, a deep neural network accelera-
tor proposed in 2014, improves the power efficiency by a factor of
4.05x. And in 2018, Conv-RAM achieves 28.1TOPS/W [25], i.e.,
1213x improvement compared with those in 2012.

While energy efficiency of machine learning computers keeps
increasing rapidly, programming productivity—including program-
ming itself and software stack development—becomes the vital
reason that hinders the deployment of machine learning techniques.
Even if a machine learning computer has a high peak performance-
energy efficiency, high-quality program and software stack are still
essential to fulfill the actual performance and energy consumption

Figure 2: A typical machine learning computer architecture.

requirements of machine learning applications.
Programming productivity is further compromised by different

programming interfaces in a single machine learning computer. As
illustrated in Figure 2, a traditional machine learning computer often
has many heterogeneous parallel components organized in a hierar-
chical way. While programming heterogeneous systems and parallel
systems are already notoriously difficult, each layer in a traditional
hierarchical machine learning computer may have a different pro-
gramming interface, which further exacerbates the programming
challenge. For example, a GPU-based machine learning computer,
such as NVIDIA DGX-2 [16], contains heterogeneous chips, i.e.,
2 CPUs (24 cores per CPU) and 16 V100 GPUs. Except that pro-
gramming multiple GPUs requires manual work based on MPI or
NCCL, programming a single GPU chip needs to use the CUDA
language to manipulate thousands of GPU threads; programming
CPUs needs to write C/C++ with parallel API support for tens of
CPU threads. Moreover, even the software stack inside a single
GPU is also quite complicated, which includes CUDA PTX for
programming grids/blocks/threads in the GPU, and microcode for
programming a stream processor [26]. Considering there have been
so many different machine learning computers, the industry needs
to put huge efforts on porting system software (including but not
limited to libraries, algorithm primitives, programming frameworks,
assemblers, and compiler backends) to machine learning comput-
ers. For instance, just in the Tensorflow alone, there are thousands
of operators [27], and optimizing an operator (e.g., convolution)
on a certain GPU can cost several months for a skilled developer.
Porting an operator to a multi-GPU computer could be even more
time-consuming. HuaWei and Cambricon have put hundreds of soft-
ware developers to port programming frameworks to the machine
learning subsystem in Mate10 cellphone [28].

In a nutshell, the programming productivity is greatly reduced by
the heterogeneous, parallel, and layer-different nature of machine
learning computer. Hence, we claim that an ideal computer for
programmer should be homogeneous, sequential, and layer-similar,
which allows simple sequential programming for machine learning
system software and applications. Moreover, if all machine learning
computers (even with extremely different scales) have the same ISA,
then the burden of programmers can be further alleviated, since they
do not need to implement and port machine learning system software
again and again. Here the question is: Is it possible to develop a
series of homogeneous, sequential, layer-similar, machine learning
computers with the same ISA, which still have high efficiency?

To answer this question, we propose Cambricon-F, which can
achieve easy-programming and high-efficiency for machine learning
simultaneously. The key insight of Cambricon-F is to organize the
components of a computer in a fractal way. Originally, the word
“fractal” in math is used to describe complicated objects which

Accelerator Multi-core Multi-processor Multi-chip

Decoder

St
or
ag

e

Function
unit

Decoder

St
or
ag

e

Function
unit

Decoder

St
or
ag

e

Function
unit

Decoder

St
or
ag

e

Function
unit

Func
unit

ctctiont ctctF
uu
Func
unit

c
unit

cF
uunituunituuunitu

titt on cttctF
uu

cF
uunituunituuunitu

tittFFFFununFunFFunFFFun
uuuuuuuununununuuu

nnnnncccncccnncccncccnnnnnnncccn
iiiiitititit
cccccc
iii

ooononoononoonooooooonnnnnnnnnnnnnnnnnn

Figure 3: Top: A fractal graph example: Sierpinski carpet [30].
The graph is subdividing itself into smaller copies and contin-
uing recursively. Botttom: Fractal computers, analogy to Sier-
pinski carpet.

exhibit similar patterns at different scales, known as expanding sym-
metry or evolving symmetry [29]. Without dive into the controversy
in math, we borrow the concept of fractal for iterative decomposition
with self-similar patterns to any scale, see Figure 3 Top. Extended to
computer domain, Cambricon-F is a series of homogeneous, sequen-
tial, multi-layer, layer-similar, machine learning computers with
the same ISA. A Cambricon-F machine has a fractal von Neumann
architecture to iteratively manage its components: it is with von
Neumann architecture and its processing components (sub-nodes)
are still Cambricon-F machines with von Neumann architecture
and the same ISA. It features the fractal computing that iteratively
decomposes an instruction on it into several instructions on low-
layer sub-nodes. Hence, Cambricon-Fs with different scales can
be used for different scenarios from embedded systems, desktops,
data centers to supercomputers. As shown Figure 3, a single-core
accelerator, multi-core chip, multi-chip server, and multi-server
system can be architected in a fractal way with the same ISA, for
different scenarios in different scales. Thus, programmers only need
to consider one sequential ISA to run the same code on any of such
devices.

In this paper, we made the following major contributions.

• We thoroughly find that common machine learning primitives
can be considered as fractal operations, which can be decom-
posed into several smaller self-similar operations iteratively.

• We proposed Cambricon-F, which is a series of homogeneous,
sequential, multi-layer, layer-similar, machine learning com-
puters with fractal von Neumann architecture and same ISA.
By providing a sequential view to programmers, Cambricon-F
can achieve easy-programming and high-efficiency simulta-
neously.

• We summarize the four challenges in mapping different types
of fractal operations onto Cambricon-F, including reduction
operation mapping, fractal data management, communication
congestion, and inter-instruction optimization. We propose a
series of techniques to address the four major challenges.

• We design and implement two Cambricon-F instances at dif-
ferent scale down to layout level and evaluate these Cambricon-
F instances with quantitative experimental results. Compared

to GPU based machines, with higher programming productiv-
ity (due to the same sequential ISA), Cambricon-F instances
are also able to achieve better performance and efficiency.

2. FRACTAL OPERATION AND MACHINE
LEARNING

In this section, we first analyze common machine learning tech-
niques by decomposing them into computing primitives. Then we
define the fractal operation, analyze three types of fractal operation
with different computing dependencies, and demonstrate that all
common machine learning computing primitives fall into the three
types of fractal operation. We finally present the challenges in de-
signing a fractal architecture that can effectively process all three
types of fractal operations.

2.1 Machine Learning
Machine Learning Techniques. Machine learning techniques

are usually computation&memory intensive and diverse in many
aspects, such as processing flow, learning style, and training method-
ology Fortunately, they are highly paralleled at different levels, and
thus can be accelerated with heterogeneous machine learning com-
puters, which equip dedicated devices, including GPU [31–33],
FPGA [34–36], and even AISC chips [22, 37–40]. Here, we first de-
compose these techniques into computing primitives, then illustrate
the mapping to fraction computing form.

Computing primitives. We select six representative techniques
and decompose the CPU execution time with typical dataset into
their common primitives, see Table 1. Specifically, for the popular-
ity of deep learning, we select the famous AlexNet [3] running
with ImageNet [41] to represent convolutional neural networks
(CNNs), a 3-layer multi-layer perceptron (MLP) to deep neural
networks (DNNs). Others are k-means, k-NN, support vector ma-
chine (SVM), and learning vector quantization (LVQ). In line with
previous works [22, 42–44], we decompose machine learning tech-
niques into matrix and vector based operations. We aggregate op-
erations such as vector multiplying matrix and matrix multiplying
vector into matrix multiplying matrix, operations such as matrix
adding/subtracting matrix, matrix multiplying scalar, and vector
elementary arithmetics into element-wise operation. Hence we get
seven major computing primitives after decomposition, including
convolution (CONV), pooling (POOL), matrix multiplying matrix
(MMM), element-wise operation (ELTW), sorting (SORT), and
counting (COUNT). We still have CONV, POOL primitives instead
of only using MMM for the convenience of analyzing and map-
ping emerging important deep learning algorithms. Note that IP
is actually vector-multiplying-vector, which can also represent the
fully connected layer in deep networks. It can be observed that

Table 1: Decomposing execution times of typical machine learn-
ing techniques into common primitives (IP: inner production;
CONV: convolution; POOL: pooling; MMM: matrix multiply-
ing matrix; ELTW: element-wise operation; SORT: sorting;
COUNT: counting).

ML Primitives

IP CONV POOL MMM ELTW SORT COUNT

CNN - 94.7x% 0.18% 5.02% 0.12% -
DNN - - - 99.9x% 0.11% - -
k-Means 90.8% - 0.116% - 9.08% 0.178% 0.012%
k-NN 99.6% - - - - 0.432% -
SVM 99.3% - 0.190% - 0.507% - -
LVQ 39.9% - 0.254% - 59.8% - -

+

+ +

x
y

z

x x
y y

yA yB
Z

xA xB

A

A

ZA

B

B

B

xA xB
y

y y
xA xBxb xa

ZA ZB

*

* *

+

xA xB
yA yB

...ZA ZB
Z

xA
yA yB

xB

.

. .

(a) vector addition (b) 1-D convolution (c) Inner production

Figure 4: Fractal operation dependency: (a) independent; (b)
input dependent; (c) output dependent.

these seven computing primitives characterize machine learning
techniques mainly.

2.2 Fractal operation
Fractal operation. We say that an operation f (·) with an in-

put tensor X is a fractal operation if there exists an operation g(·)
allowing

f (X) = g(f (XA), f (XB), ...) (1)

where f (·) is the target operator, g(·) is the retrieving operator, X
represents all operands of f (·), XA,XB, ... are the subsets of X.
Based on the relationship among XA,XB... and X, we can divide
the fractal operations into three categories: independent, input de-
pendent, and output dependent.

• If XA,XB... are independent, non-overlapped to each other,
each subset is independent that they can be computed locally,
i.e., independent. In Figure 4 (a), we use a vector adding
operation as an example to present independent fractal op-
eration. For clear illustration, we split X into two operands,
i.e., �x,�y—two input vectors for adding. As �x and �y can be
divided into two independent pieces (�xA, �xB and �yA, �yB), two
vector adding operations can be achieved independently, i.e.,
�zA = �xA + �yA and �zB = �xB + �yB. Each piece is working on
independent part of the inputs and the final outputs just need
assemble with no additional operation, i.e.,�z = [�zA, �zB]. Thus,
g(·) is linear function g(x) = x.

• If XA,XB... are overlapped, each subset requires extra copies
of some inputs that leads input redundancy in the fractal oper-
ation, i.e., input dependent. For example, a one-dimensional
convolution as shown in Figure 4 (b). Similarly, we use�x,�y
to represent two operands and�x = [�xA, �xB]. We still divide the
operation into two pieces, where each piece is working on in-
dependent part of outputs, i.e.,�z= [�zA, �zB] =�x��y= [�xA, �xB]��y.
However, these two operations have overlapped inputs, where
parts of �xA and �xB (�xa, �xb, respectively) are required addition-
ally, i.e., �zA = [�xA, �xb] ��y and �zB = [�xa, �xB] ��y. But, there is
still no additional operation for final outputs, i.e., g(x) = x.

• In some cases, g(·) is introduced to reduce the results of pieces
into the final results, i.e., output dependent. For example, as
shown in Figure 4 (c), an inner production operation (z =
�x ·�y) can be divided into smaller pieces where each piece
still performs an inner production operation (zA = �xA · �yA and
zB = �xB · �yB); but to get the final results, the results of those
pieces will be summed up, i.e., z = zA + zB. Thus, g(·) is the
sum operation, g(·) = sum(·). Note that a fractal operation
can be both output dependent and input dependent.

2.3 Fractal computing for machine learning
We present how machine learning computing primitives can be

accomplished in a fractal form (i.e., fractal computing) and analyze

Input feature maps Input feature mapsOutput feature maps Output feature maps

Ch
an

ne
l

Height
Width

Figure 5: CONV decomposition. Left: dividing in channel di-
mension. Right: dividing in height dimension.

the challenges for designing corresponding architecture. Based on
the above analysis, we can classify all machine learning primitives
into three categories, see Table 2. Note that different decomposition
can lead to different dependence. For example, CONV can divide the
input features maps in channel dimension, where the final outputs
rely on results from each divided pieces (thus output dependent), as
shown in Figure 5 (left); CONV can divide the input feature maps in
height or width dimension, where each part of the output results only
need inputs with some overlaps (thus input dependent), as shown in
Figure 5 (right).

More importantly, to effectively process fractal operations, fractal
architecture should be built hierarchically with a tree-like topol-
ogy where several son nodes compose a father node iteratively, see
example Cambricon-F architecture shown in Figure 3. Obviously, in-
dependent operations are easily mapped to such fractal architecture
and computed fractally. Also, input dependent can be transformed
to independent with input redundancy. For the 1D convolution oper-
ation in Figure 4 (b), each part only needs some more inputs from
X then the fractal operation is independent. In Table 2, we present
the analysis of decomposition of computing primitives in a fractal
form. Additionally, we present the data redundancy if using inde-
pendent decomposition instead of input dependent. For the output
dependency operations, g(·) is inevitable no matter whether inputs
are dependent or independent. Thus, it is totally feasible to perform
machine learning computations in a fractal form. But for designing
fractal architecture, we must solve the following challenges related
to extra data redundancy and reduction operation g(·):

• Reduction Operation. Reduction operation g(·) in output
dependent operations are not naturally fitted in fractal opera-
tion as independent and input dependent operations. Thus, for
efficiently processing g(·), we introduce lightweight comput-
ing unit (i.e., LFU) in each node locally. By aggregating data
in son FFUs into a father LFU iteratively, such operations can
be processed efficiently in father LFUs in Cambricon-F. We
introduce that in detail in later Section 3.1, 3.2, 3.3.

• Data Redundancy. In fractal operation computing, input
dependent operations can be computed as independent opera-
tions but with data redundancy. For that, the memory is hierar-

Table 2: Computing primitives analysis.
Primitives Decomposition Dependency g(·) Data Redundancy

IP Length-Wise Output Add -
CONV Feature-Wise Output Add -
CONV Batch-Wise Input - Weight
CONV Spatial Input - Weight, Overlapped
POOL Feature-Wise Independent - -
POOL Spatial Input - Overlapped
MMM Left,Vertical Output Add -
MMM Right,Vertical Input - Left Matrix
ELTW Any Independent - -
SORT Any Output Merge -
COUNT Any Output Add -

Mem

LFU

LFU

...

... ...

...

...

fractal instructions

local
instructions

FFU FFU

FFU FFU

Mem

LFU

LFU

...

... ...

...

...

fractal instructions

local
instructions

FFU FFU

FFU FFU

Level i Level i+1

ControllerMem
Local instructions

Level 0 (top)

ControllerController

FU

Mem
fractcal instructions

Level N (leaf node)

...FFU FFUFFU

Controller

... ...

Figure 6: A typical fractal von Neumann architecture: level 0
(top node)...level i node and its son node in level i+ 1...level N
(leaf node).

chically organized and the memory allocation leveraging the
separable time order (Section 3.5). Also, we implement ten-
sor transposition table with pipeline concatenating and data
broadcasting to reduce the data movements, so as to improve
the efficiency of Cambricon-F (Section 3.6).

• Communication. Communication among different nodes
would lead to enormous wire connections and consequently
to be costly in terms of area, latency, and energy. For that,
from our analysis, even the output dependent operations only
require data movements from leaf to root node for reduction
operations. Thus, it is unnecessary to have communication
between any pair of nodes. In Cambricon-F, we organize
the machine learning computations iteratively in a fractal
form and limit the connections to father-son nodes only, thus
reducing the wire congestion (Section 3.3, 3.4).

• Optimization. Optimization among instructions would be
critical to obtain high efficiency. Individual operations are
easy to be implemented the entire processing flow from data
fetching to results writing back, but it may ignore the poten-
tial benefits from data reuse among instructions. For that, we
implement pipeline to leverage the parallelism among instruc-
tions (Section 3.4); we also introduce pipeline concatenating
and data broadcasting in Cambricon-F to maximally utilize
the data already allocated in FFUs (Section 3.6).

In summary, after addressing the above concerns, the fractal archi-
tecture would be able to achieve at least comparable efficiency with
traditional architecture for machine learning applications.

3. CAMBRICON-F COMPUTERS
In this section, we present the Cambricon-F computers from the

architects’ perspective, including overall architecture, instruction
set architecture, decoder, pipeline, memory hierarchy, and imple-
mentation details.

3.1 Fractal von Neumann Architecture
A Cambricon-F machine has a fractal von Neumann architecture,

which is hierarchical architecture built iteratively, as illustrated in
Figure 6. At the top level (root node), programmers should only
learn a simple von Neumann architecture that contains a memory

component (Mem), a functional unit (FU), and a controller with a de-
coder inside to decode instructions. In the middle levels, each node
is still with von Neumann architecture, containing a controller (it
can be either hardware or software), a memory component (Mem),
several processing units including local functional units (LFU) and
several fractal functional units (FFU). Each FFU is a son node
(Level i+1) of the current node (Level i) and has the same ISA
and similar architecture. At the bottom level, each leaf node is an
accelerator than finishes the most part of the computation. There-
fore, a Cambricon-F machine is built with a fractal von Neumann
architecture to iteratively manage its components.

The ISA of Cambricon-F is Fractal Instruction Set Architecture
(FISA), where each fractal operation can be performed with one
or more FISA instructions. FISA includes two different kinds of
instructions: local instructions and fractal instructions. For a local
instruction, the controller can directly issue it to an LFU, and the
LFU will complete the local instruction. For a fractal instruction,
the controller will translate into several instruction segments, where
each instruction segment is solved by an FFU. Hence, program-
ming Cambricon-F only needs to consider a single sequential ISA,
while the heterogeneity can be implicitly solved through the col-
laboration between LFUs and FFUs, and the parallelism can be
implicitly solved through the parallelism between FFUs. Since an
Cambricon-F computer and its all descendant Cambricon-Fs/FFUs
have the same ISA, a programmer does not need to consider the
difference between different layers of a machine learning computer.
Moreover, different Cambricon-F computers with different scales
(either a machine learning supercomputer or a small machine learn-
ing subsystem in a cellphone) can use the same ISA, which allows a
same binary code to run on platforms from cloud to end.

To efficiently process fractal operations, Cambricon-F adopts a
hierarchical memory system. Cambricon-F manages the storage
in two types: global memory and local memory. At the top level,
Cambricon-F contains a larger memory for buffering input data, i.e.,
the global memory, which is also visible to programmers. Each node
in Cambricon-F contains a local storage to buffer the data, which
will become a “global memory“ shared among its son nodes. In such
a manner, we manage all the memory in Cambricon-F hierarchically.

3.2 Instruction Set Architecture
Cambricon-F leverages a special instruction set architecture to

achieve the fractal computing, i.e., Fractal Instruction Set Architec-
ture (FISA). Formally, we give the definitions of FISA instruction
and FISA:

• FISA instruction. A FISA instruction, I, is a 3-tuple 〈O,P ,G〉,
where O is an operation, P is a finite set of operands, G is
granularity indicator.

• Fractal instruction. A FISA instruction, I 〈O,P ,G〉, is a fractal
instruction, iff there exists a set of scale indicators S′1,S

′
2, . . . ,S

′
n

(S′i � S, � is the partial order defined on scale indicators) that I
can be achieved through computing with s′1,s

′
2, . . . ,s

′
n and other

FISA instructions iteratively.

• An ISA set is a FISA set, iff it contains at least one fractal FISA
instruction.

• A machine M running FISA set R is a fractal machine, iff there
exists at least one fractal instruction I that is fractal-executed on
M.

The FISA design for Cambricon-F stays at a relatively higher
level so as to improve the programming productivity with same
sequential code, as in Table 3 where we show a subset of FISA.

IQ SD

SQ

CMR

DD RC

PD

DMAC DMA

FFUs

LFUs

SD (Async) ID LD EX RD WB

Figure 7: Pipeline partition in an Cambricon-F node.

Primitives such as convolution and sorting can be directly expressed
with FISA instructions. Operations of low operation intensity (e.g.
Element-Wise Operations) are also supported in FISA for better
programming versatility. Such instructions will be considered as a
reduction operation by Cambricon-F and tend to execute on LFUs.

3.3 Controller
The controller exists in each node in a Cambricon-F, serving

to manage its son nodes working in a fractal manner. From a
functionality perspective, the controller consists of three phases:
a sequential decomposition phase, a demotion phase, and a parallel
decomposition phase. Several specific modules are thusly designed
in pipeline stages to accomplish the transformation procedure from
input instructions to sub-level nodes, including FFUs and LFUs,
see Figure 7. Briefly, in sequential decomposition phase, input in-
structions are loaded into Inst Queue (IQ), which is later fetched by
Sequential decomposer (SD). SD decomposes into a sequential exe-
cuted instruction list regarding the hardware limitation. In demotion
phase, reformed instructions in the list are decoded by Demotion
Decoder (DD) into sub-level instructions. In parallel decomposition
phase, sub-level instructions for fractal computing will be passed to
FFUs through a Parallel decomposer (PD), for local computations
to LFUs through a Reduction Controller (RC), for data movements
to DMA Controller (DMAC) to access memory.

Particularly, Demotion Decoder, the key component in controller,
decode input upper instructions to sub-level instructions to be frac-
tally computed. For each sub-level instruction SQ, DD checks
operand dependencies to instructions running in the pipeline. DD
will stall the pipeline if a read-after-write (RAW) dependency ex-
ists. DD also checks the storage requirements of operands, allocates
memory space locally, and generates DMA instructions. DMA in-
structions will be sent to DMAC for data exchange between local
memory and "shared memory” in upper level, e.g., loading sources
or writing back results. DD then binds the new local addresses to

Table 3: Examples of Cambricon-F Instructions
Type Operation Name

Deep

Learning

Convolution CV2D, CV3D
Pooling MAX2D, MIN2D, AVG2D
LRN [3] LRN

Linear
Algebra

Matrix Multiplication MATMUL

Euclidian Distance EUCLIDIAN1D

Sort Merge Sort SORT1D

Count Count COUNT1D

Reduction

Binary Element-wise ADD1D, SUB1D, MUL1D
Unary Element-wise ACT1D
Horizontal HSUM1D, HPROD1D
Merge MERGE1D

ID

LD

EX

RD

WB

Level i

Time

ID

LD

EX

RD

WB

Level i+1

Time

Figure 8: Fractal Pipeline of FISA.

operands in sub-level instructions which later sent to PD for fractal
computing, RC for reduction operations.

Parallel decomposer subdivides sub-level instructions into mul-
tiple FISA instructions, i.e., fractal instructions, that are assigned
FFUs. FFUs process fractal FISA instructions during the EX pipeline
stage in parallel.

Reduction Controller aims to perform the reduction operation in
output dependent fractal operations normally. However, reduction
operation can be assigned to FFUs instead of LFUs for high effi-
ciency, when RC predicts significantly reduced execution time on
FFUs or founds LFUs unavailable. In cases, Reduction Controller
send a commission to PD by writing the operation into Commission
Register (CMR). PD will check if there is a commission in the regis-
ter at the start of each FISA cycle, and append the commissioned
operation.

3.4 Pipelining
Normally, Cambricon-F performs each instruction recursively.

Top level (level 0) node decodes and sends fractal instructions to its
FFUs where each FFU repeats the decoding/sending procedure until
the leaf nodes for execution. Leaf nodes return computed results to
their father nodes and that repeats until the top node. During such
execution process, FFUs in leaf nodes, where the heavy computation
tasks are performed, are idle when its upper-level nodes are decoding
instructions recursively.

Thus, in order to increase the throughput of Cambricon-F, we
pipeline the FISA instruction execution into five stages: Instruction
Decoding (ID), Loading (LD), Execution (EX), Reduction (RD) and
Writing Back (WB), see Figure 7. Similar to pipeline in CPUs, an
issued instruction will be decoded local instructions, fractal instruc-
tions, and DMA operations in the Controller (ID). Data is loaded
from memory to local storage for FFUs and LFUs computation (EX
stage) with DMA operations at LD stage. LFUs will start the reduc-
tion operations at RD stage or be bypassed if no reduction operation
needed. The final or partial results will be written to memory from
local storage at WB stage. Note that SD is executed asynchronically
where SD keeps decompositing instructions from IQ to SQ.

As each node in Cambricon-F executes its 5-stage pipeline for
its instructions, Cambricon-F will execute FISA with a recursive
pipeline. In Figure 8, we show the pipeline for a two-level Cambricon-
F. In the EX stage of level 0, FFUs run their own pipeline, i.e., level
1 pipeline. As a result, the recursive pipeline of FISA has utilized
every component of every hierarchy at almost any time, except the
pipeline startup and emptying.

3.5 Memory Management
As each phase in the Controller may require memory allocation,

memory management is challenging and more critical to the overall
efficiency. Fortunately, we observe that memory allocation can be
well separated in term of time, owing to functionality separated
modules in Controller, i.e., SD, DD and PD. Specifically, mem-
ory blocks allocated by PD are always allocated later, but released

Recycled 1 Recycled 2 Recycled 3 Static Even Static Odd

Figure 9: Memory Management of Cambricon-F Controller.
The memory space is divided into 4 segments (3 recycling and
1 static), managed as 5 stacks (2 stacks in the static segment).

sooner than blocks simultaneous allocated by DD, and blocks allo-
cated by Demote Decoder are always allocated later but released
sooner than blocks simultaneously allocated by SD. Furthermore,
blocks for parallel decomposition only live in EX and sometimes
RD pipeline stage, and blocks for demotion live in the whole FISA
cycle. But memory blocks for sequential decomposition may live
across multiple FISA cycles since there could be multiple sub-level
instructions decomposed from the FISA instruction.

Thus, we design the memory controller with leveraging the timing
order observation. As four stages except for ID of FISA pipeline
involved in memory movements, there are only four instructions
maximally that may need memory access at the same time. Thus,
we divide the local storage into four dependent memory spaces,
and three are assigned to these four instructions in the pipeline as
a new instruction reaching LD stage can reuse the memory space
of the instruction at the WB stage. For each instruction, memory
allocation requests will be queued in a list and processed by DMA
controller sequentially. As shown in Figure 9, memory space is
always allocated in the list order, which is consistent with the time
order that Controller requests. For the memory allocation alive for
multiple FISA instructions, i.e. those for sequential decomposition,
we use the fourth memory space (static segment) which is shared by
every pipeline stage for their different lifecycles. Memory allocation
to static segment are double-ended for parity of instructions to avoid
overlapped memory lifecycles of adjacent instructions. The design
of the allocation list significantly reduces the complexity of memory
management, and keep the space utilization efficiency.

Here, we do not manually release the allocated memory space,
where new instruction will directly refill with new data. The reason
is two-fold. First, results of instruction will be written back and
the remain inputs or intermediate results are usually useless for
later computations, as our FISA instructions work at a relatively
higher level. Second, for seldom cases that following instructions
may share the inputs/outputs, we implement a Tensor Transposition
Table to find out data that can be forwarded or reused, resulting in a
similar behavior as "pipeline forwarding" (see Section 3.6).

3.6 Implementation details
Tensor Transposition. As memory bandwidth is always critical

to performance for large designs and heavy workloads, we propose
the Tensor Transposition Table (TTT) to optimize the data reuse
in two ways. First, TTT avoids the unnecessary data movements
when two adjacent instructions share the same inputs. For a five-
level Cambricon-F with 2048 cores (each level contains 1, 4, 8, 64,
2048 nodes), we observe that it can only reach 3% of the peak
performance on RESNET-152, but with a 93.36% utilization of root
memory bandwidth during the execution. With TTT recording the
local allocation, Demotion Decoder is able to learn which operand
is locally available and change the loading source address to local
address during address binding; thus, remote data movements are
avoided. As a result, Cambricon-F achieves 62% of peak perfor-
mance for the previous example, with a 20x improvement. Second,
TTT enables the data reuse as pipeline forwarding, where the next
instruction uses the previous instruction’s result as input. In this

case, two instructions can be pipelined without bubbles.
Data consistency and coherence. In Cambricon-F, we apply

many constraints to manage the data consistency and coherence
problems. Since our system will decompose the operation into
smaller non-overlapped segments for son nodes execution; thus, data
may have many copies in different nodes. However, as presented
in Section 3.5, our instruction generation will not allow write data
to the read address space, thus ensuring data consistency naturally
in most of the cases. Additionally, TTT introduces the risk of data
inconsistency as it forwards data from write address space to read
address space. Instead of implementing costly consistency protocols,
we set up a validity period of two FISA cycles for each record in
TTT. TTT is split into two banks, where each bank is used only by
one instruction. Whenever an instruction is using one bank, the new
instruction entering the EX stage will use the other bank to record.
Records in that bank were used by the previous instruction and can
be overwritten. Thus, with such validity mechanism, the lifetime
of records won’t exceed the lifetime of the referenced data lying
in parent memory. To guarantee the data coherence, simultaneous
memory writes into the same memory address are always prohibited.
The destination addresses of instructions assigned to each FFU will
always be different.

Pipeline concatenating. In Cambricon-F, parallel decomposed
sub-instructions are assigned to FFUs when EX stage starts; the EX
stage ends once sub-instructions assigned to all FFUs are retired.
It may cause pipeline emptying and child nodes refilling repeat-
edly at the boundaries of every parent FISA cycle. To concatenate
pipelines of child nodes across the boundaries, we pre-assign sub-
instructions in next EX stage to FFUs, advancing one FISA cycle.
The pre-assigned instructions can be issued to pipelines of FFUs
once DMA operations of parent node are finished. Note that there
are some instructions which can not be pre-assigned because of the
possible data dependency violations. In our experiments, 93.11%
of instructions in RESNET-152 are able to be pre-assigned, which
could benefit from pipeline concatenating, resulted in a 13.0% over-
all performance gain.

Data broadcasting. To further reduce the traffic at local mem-
ory, we enable the data broadcasting mechanism in each node. As
parallel decomposed sub-instructions often have shared data among
all FFUs, broadcasting data will require the local memory to send
data only one time, thus reducing the data traffic. Each FFU will
receive the other operand through DMA between itself and the lo-
cal memory. While processing each FISA instruction, DMA will
start processing data broadcasting after DMA requests in WB and
LD stages are finished. Our experimental results show that data
broadcasting improves the performance by 19.0%, and reduce the
local memory traffic by 24.2%, while executing RESNET-152 on a
Cambricon-F computer.

Memory size. Here, we study the relationship between mem-
ory size and performance under certain bandwidth constraint. As
Cambricon-F adopts a fractal architecture where local memory in
each node is shared by all the son nodes, we can view each node
as a parallel computing model. Thus, the problem in each node
turns to be a memory bound scalable problem in parallel comput-
ing model. Inspired from [45–47] which studies the relationship
between memory capacity and workload size and operation inten-
sity and bandwidth, respectively, we propose the Memory Bounded
Operational Intensity (MBOI) problem studying the relationship
between operation intensity and memory size, i.e., operational in-
tensity I = MBOI(M). Thus, we are able to decide memory size at
each node based on MBOI.

The MBOI problem is tightly related to each algorithm and work-
load. For many applications, MBOI(M) rises monotonically with

217 221 225 229 233 237

101

103

105

Memory Size (Bytes)

O
p
er
at
io
n
al

In
te
n
si
ty

(O
p
s/
B
yt
e)

VGG-16

ResNet-152

MatMul

MatMul Theoretical

GeoAvg

Figure 10: Measured Memory Bounded Operational Intensity
(MBOI) on an Cambricon-F node.

M. In Figure 10, we show the measured and theoretical MBOI
numbers in a Cambricon-F node (i.e., parallel computing model)
of three representative algorithms. For Cambricon-F with different
algorithms and workloads, we use the average MBOI (MBOIRe f)
to determine memory size of each node. To overlap computation
and communication and avoid one of them being bottleneck, the
bandwidth and peak performance of each Cambricon-F node should
be balanced at a ratio around operational intensity, i.e.

Peak Performance/Bandwidth ≈ MBOIRef (M)

Thus, we have

M ≈ MBOI−1
Ref (Peak Performance/Bandwidth)

With above determination method, we are able to decide memory
size in different Cambricon-F instance designs, which vary in hier-
archy depth, node number at each level, and bandwidth constraints.
More importantly, we are able to compare different Cambricon-F
designs. In Table 4, we report simulated area and energy results
of different Cambricon-F designs with the same capability, i.e.,
512 Cores × 0.46 Tops per Core = 238 TFlops. Note the local stor-
age are eDRAMs simulated with DESTINY [48] with sizes up to
256 MB. Attanable performance in the table is defined as the geomet-
ric average of estimated performance of VGG-16, RESNET-152
and MATMUL running on a server composed of four chips. It can
be observed that designs with fewer hierarchies tend to attain higher
performance, but the desired memory space to support such a dense
hierarchy is impractically large.

4. PROGRAMMING AND EXECUTION
Programming. With all the effort to provide programmers with

sequential programming experiences, Cambricon-F are able to run
the same piece of code without any other work. In Figure 11, we
show a typical Cambricon-F inline assembly code using a k-Nearest
Neighbor algorithm as a driving example. The principle of FISA is

Table 4: Estimated Power and Performance of Different De-
signs

Hierarchy Power Performance Efficency Area

Watt TOPs/sec TOPs/J mm2

1-512 1035.02 140.92 0.14 5662.72
1-16-512 176.49 150.05 0.85 783.53
1-2-16-512 55.66 113.34 2.04 184.91
1-4-16-512 57.52 107.12 1.86 263.64
1-4-16-64-512 68.83 104.94 1.52 208.72

k-Nearest Neighbors

int K = 3, N = 262144

tensor C[1,N], X[512,N]

tensor D[N,N], C2[N,N]

C2[:] = C[0]

calculate distance for each pair of samples

fisa euclidian1d X, X, D

tensor C3[K,N], P[K,N]

sort to find k-nearest neighbors' category

fisa sort1d D, dc, C2, C3[K,N][N,N][0,0]

population count in k categories

fisa count1d C3, P

sort to find the most popular category

fisa sort1d P, dc, C3, C[1,N][K,N][K-1,0]

Figure 11: An Cambricon-F program of k-NN.

that the nodes perform their own duties and Do Not Interfere with
how the child nodes work. The programmer of Cambricon-F, which
acts as the “controller” beyond the top level node, also follows the
principle. The programming of Cambricon-F has the following
characteristics:

• High level, arbitrary granularity. Each FISA instruction
is corresponding to a complete machine learning primitive.
The programmer does not interfere with how the operation is
decomposed. High-level instructions bring higher operational
intensity and help decrease data movements.

• Implicit data movement. Contrary to RISC, Cambricon-F
does not provide explicit load-store instruction to the program-
mer. FISA hides the internal storage from the programmer by
forcing all operands to be external. The programmer does not
interfere with how the internal storage is used, so the program
does not need to adapt to different internal storage sizes when
applied to different Cambricon-F instances or nodes.

• Hardware transparency. Note that there is no hardware in-
formation appeared in the code. The programmer of Cambricon-
F only dedicates on defining the computation task, and do not
interfere with the internal hardware behaviors.

For the next level nodes, the controller of the parent node acts as a
programmer. The Do-Not-Interfere principle reduced the complexity
of the programming, meanwhile, it also reduced the complexity of
the controller.

Execution on Different Cambricon-F Instances. The execu-
tion model of Cambricon-F can be summarized as Single Task, Mul-
tiple Heritors (STMH). As shown in Figure 12a, a task is executed
simultaneously on every hierarchies of Cambricon-F, where each
hierarchy see a part of the task with different granularity. STMH
defines how two adjacent hierarchies cooperate reducing the gran-
ularity to inherit the task from the higher hierarchy to the lower
hierarchy. More specifically, the cooperating mechanics can be
decoupled to two relations: the relation with parent node, and the
relation between sibling nodes. Here, we define the paternity rela-
tion via Sequential decomposer, and the sibling relation via Parallel
decomposer. Given the paternity and sibling relations, and under
the assumption that leaf nodes can solve the assigned tasks directly,
the execution of whole machine is clearly defined, regardless what
configuration does the Cambricon-F instance have.

Figure 12 illustrates both relations. The sibling relation (Fig-
ure 12b) is to distribute the task to achieve concurrent execution.
The paternity relation (Figure 12c) is to provide a strong guarantee

TaskProgrammer

Level 0

Level 1

Level 2

TaskProgrammer

Level 0

Level 1

(a)

Task

Sub
Task 0

Sub
Task 1

Sub
Task N

. . .

Child
Node 0

Child
Node 1

Child
Node N

. . .

Siblings
Relation

Parent Node

(b)

. . .Task Task

Sub Task 0

Sub Task 1

...

Sub Task N

Child Node

Paternity
Relation

Parent Node

(c)

Figure 12: STMH execution model. (a) Execution of same task
on different Cambricon-F instances. (b) Sibling Relation. (c)
Paternity Relation.

that each Cambricon-F node accepts tasks of any granularity not
subjected to hardware constraints so that the parent node (and pro-
grammers) would not need to have knowledge of any implementa-
tion details of the node to assign tasks. With this guaranty provided,
the interface of Cambricon-F is unified among any hierarchies of
any Cambricon-F instances. The program of Cambricon-F could
be migrated without any modification since there is no hardware-
dependent information involved in the program. Figure 12a illus-
trates the execution of the same task on two Cambricon-F instances
of different configuration. Note that even two instances have dif-
ferent executions for the task, the task given by the programmer is
identical.

In Figure 13, we give a concrete example to illustrate the execu-
tion process of sample code from Figure 11 on different Cambricon-
F instances. The identical sample code is executed on two different
instances, which are also the designs used for evaluation in this paper,
i.e., Cambricon-F1 and Cambricon-F100 (see Section 5 for details).
The execution on Cambricon-F1 which has a smaller configuration
is heavily decomposed, while the execution on Cambricon-F100 has
remained a relatively large granularity of sub-instructions. The last
part of execution on Cambricon-F1 where has been communication-
dominated is corresponding to the sorting and counting operations
from the code. The execution time of Cambricon-F100 is dominated
by the communications of the top-level hierarchy, which could be
easily found out in Figure 13 (c).

5. METHODOLOGY
Benchmarks. As shown in Table 5, we use seven different bench-

marks in this paper. For the importance of deep learning, we select
VGG-16 [49], a 16-layer CNN with 138 M parameters in total, and
ResNet-152 [50], a very deep network with 152 layers, running
with ImageNet [41] dataset as representative benchmarks. We also

1 s

(a)
100μs

(b)
1 s

(c)
100μs

(d)

Figure 13: Execution timeline of sample code (Figure 11) on
two different Cambricon-F instances: (a) Full execution on
Cambricon-F1, (b) Figure (a) zoomed in between 0ms and
0.4ms. (c) Full execution on Cambricon-F100. (d) Figure (c)
zoomed in between 1.4ms and 1.8ms. (Blue blocks: DMA ex-
ecution; red blocks: FFUs and LFUs execution. Each figure
shows the execution time of Cambricon-F hierarchies from top
to bottom.)

select four popular machine learning techniques, including K-NN,
K-MEANS, LVQ, and SVM, as representative benchmarks. For
these four machine learning techniques, we use a randomly gener-
ated data set, which contains 262 thousand 512-dimension samples
within 128 categories, to emulate a computation-heavy scenario.
Additionally, as MATMUL is the most important operation in the
machine learning domain, we also include MATMUL running with
randomly generated 32768-order square matrices as our benchmark.

GPUs. In this paper, we select two GPUs as our baseline, i.e.,
Nvidia DGX-1 [15] and Nvidia GeForce GTX-1080Ti. DGX-1 is a
supercomputer with eight NVIDIA Tesla V100-SXM2 GPUs, where
each has a 125TeraOps/sec peak performance. The bandwidth from
the host to devices is measured as 84.24GB/s in total. 1080Ti is
a high-end graphics card with 10.6TeraOps/sec peak performance
and 484GB/s memory bandwidth. For DGX-1, we program the
benchmarks under the framework TensorFlow 1.9 [27] with GPU
support (CUDA 9.0 [51] and cuDNN 7 [52]), and optimize the com-
putation graph via NVIDIA TensorRT 4 [52]. We use nvprof and
nvidia-smi to measure its power and memory bandwidth usage.

Cambricon-F. We build two different size Cambricon-F instances
that have similar characteristics as GPUs, i.e., Cambricon-F100
and Cambricon-F1, for a fair comparison to GPUs. Cambricon-
F100 is a fractal machine learning supercomputer with a peak per-
formance of 956 Top/s, similar to DGX-1 (125*8=1000 Tops/s).
Cambricon-F100 is a five-level architecture of Server, Card, Chip,
Fractal Multiprocessor (FMP), and Core in each level from top to
bottom, see Table 6. At the top level (L0), Cambricon-F100 contains

Table 5: Benchmarks.
Benchmark Size

VGG-16 [49] 1.38×108 params, 3.09×1010 Ops, variable batch

ResNet-152 [50] 6.03×107 params, 2.26×1010 Ops, variable batch
K-NN 262,144 samples, 512 dimensions, 128 categories

K-Means 262,144 samples, 512 dimensions, 128 categories
LVQ 262,144 samples, 512 dimensions, 128 categories
SVM 262,144 samples, 512 dimensions, 128 categories

MATMUL 32,768 orders, square matrix

Figure 14: Layout of Cambricon-Fs. Left: Leaf Core. Mid:
FMP(Cambricon-F1 Chip). Right: Cambricon-F100 Chip.

four Cambricon-F100 Computing Cards connected through PCI-E
3.0, a host CPU (Intel Xeon E5-4640 v4) serving as high-level con-
troller and LFU, and 1TB host memory. The leaf node (L4) is a
Cambricon-F accelerator serving as a computing Core, which has
256 KB eDRAM local storage, 16× 16 MAC matrix running at
1 GHz, reaching peak performance of 477 GOPs/s. Cambricon-F1 is
a Cambricon-F accelerating card at desktop scale with a peak perfor-
mance of 14.9 Top/s, similar characteristics to 1080Ti (10.6 Top/s).
Cambricon-F1 has a three-level architecture of Card, FMP, and Core
in each level from top to bottom, see Table 6. Cambricon-F1 has
one FMP on-chip and that has 32 cores inside.

To obtain the hardware characteristics, we implemented the Cambricon-
F designs (up to chip level) in RTL and synthesize, place, and route
using Synopsys toolchain under TSMC 45 nm technology. Fortu-
nately, Cambricon-F is a fractal architecture built iteratively, we are
able to estimate the hundreds millimeter square design using smaller
pieces following bottom-up design philosophy. Due to the extreme
long hardware emulation time and large design, we carefully build
a simulator in C++ to get the performance. For energy costs, we
dump data movements from our simulator and estimate memory
costs with DESTINY [48], other parts are estimated based on our
layout characteristics.

6. EXPERIMENTAL RESULTS
We first present the main characteristics of Cambricon-F in-

stances, then present the performance and energy results when com-
paring against GPUs and accelerators. The experimental results are
shown in Figure 15, where we adopt the Roofline Model [46] to
illustrate the efficiency and bottleneck of the systems.

Hardware Characteristics. The layout of a Core, a FMP (same
as a Cambricon-F1 Chip) and a Cambricon-F100 Chip are shown in
Figure 14. In Table 7, we present the detailed hardware characteris-
tics of the chip in Cambricon-F100 and Cambricon-F1. Cambricon-

Table 6: Specification of Cambricon-F instances.
Cambricon-F100 L0 L1 L2 L3 L4

Name Server Card Chip FMP Core
FFUs 4 2 8 32 -
LFUs 1 0 16 16 -
Local Storage 1 TB 32 GB 256 MB 8 MB 256 KB
Bandwidth (GB/s) 128 512 512 512 80
Peak Perf.(TOPs/sec) 956 238 119 14.9 0.46

Cambricon-F1 L0 L1 L2

Name Chip FMP Core
FFUs 1 32 -
LFUs 0 16 -
Local Storage 32 GB 8 MB 256 KB
Bandwidth (GB/s) 512 512 80
Peak Perf.(TOPs/sec) 14.9 14.9 0.46

Cambricon-F GPU Roofline VGG-16 ResNet-152 MatMul k-NN k-Means LVQ SVM

10−1 100 101 102 103

10−2

10−1

100

101 14.014.7

14.914.111.7

8.57

14.9

9.82

5.72

2.06

0.23

0.03
0.01

0.18

Operational Intensity (Ops/byte)

T
er
a
O
p
s/
se
c

Cambricon-F1

1080Ti

(a)

101 102 103 104

100

101

102

103

430 597
559

31.4

11.4

6.7

60.1

209

282

65.2

7.75

2.52
0.83

34.6

Operational Intensity (Ops/byte)

T
er
aO

p
s/
se
c

Cambricon-F100

DGX-1

(b)

Figure 15: Roofline Cambricon-Fs compared to GPUs. (a) Cambricon-F1 and 1080Ti. (b) Cambricon-F100 and DGX-1.

F1 occupies 29.21mm2 area, consuming a power of 4.94W , where
each core has an area cost of 0.43mm2, a power of 75.18mW at
45nm. Cambricon-F1, which is a 8-chip server having 2048 cores
in total, has an area of 415mm2 in total, consuming a power of
42.87W at 45nm. It can be observed that Cambricon-F favors of
large memory.

In Table 8, we also compare Cambricon-F chips with GPUs
and accelerators. It can be observed that Cambricon-F1 chip has
the highest power efficiency and area efficiency, 3.02 Tops/W and
0.51 Tops/mm2. Cambricon-F100 chip achieves the comparable
area efficiency, but slightly lower power efficiency when compared
against Google TPU [40]. While considering the entire card where
32 GB DRAM is included in each Cambricon-F Computing Card,
Cambricon-F1 has a 40.57% more peak performance, but with
45.11% power cost of 1080Ti GPU card and Cambricon-F100 Com-
puting Card has a 1.90x more peak performance with 67.34% power
cost of a V100-SXM2 GPU card.

Cambricon-F1 vs. 1080Ti. As shown in Figure 15 (a), Cambricon-
F1 has attained a 5.14x performance and 87.3% lower traffic on
average when compared to 1080Ti. An Cambricon-F1 Computing
Card consumes an average of an 83.1 Watt power for all benchmarks,
and 1080Ti consumes an average of 199.9 Watt. The attained perfor-
mance of Cambricon-F1 is from 1.42x to 659x higher than 1080Ti.
Note that Cambricon-F1 has a 40.6% higher peak performance and
a 5.8% higher root bandwidth relatively to 1080Ti.

The main reason for that is because of the large on-chip storage.
As described in Section 3.6, large intermediate storage enables

Table 7: Cambricon-F layout characteristics.
Component Area(μm2) (%) Power(mW) (%)

CORE 426,348 75.18
Memory 201,588 (47.28%) 16.15 (21.48%)
Combinational 176,228 (41.33%) 23.74 (31.58%)
Registers 42,248 (9.91%) 27.38 (36.42%)
Others 6,284 (1.47%) 8.38 (11.14%)

CHIP

Cambricon-F1 29,206,289 4,935.32
Cambricon-F100 415,109,951 42,873.06

significantly greater Memory Bounded Operational Intensity. While
in 1080Ti, the programmable nodes under the root memory, i.e.,
CUDA cores, have very limited local storage space (96KB shared
memory vs. 8MB L1 local storage); thus, the operational intensity
is bounded. The operational intensity of all seven benchmarks on
Cambricon-F1 has reached the ridge point of the roofline, indicating
that the root bandwidth will not be the performance bottleneck of
Cambricon-F1. Thus, Cambricon-F1 has attained 57.4%-99.8%,
88.9% on average of peak performance on all benchmarks.

Cambricon-F100 vs. DGX-1. As shown in Figure 15 (b),
Cambricon-F100 has a 51.9% higher root memory bandwidth com-
pared to DGX-1, while the peak performance of Cambricon-F100 is
4.4% lower than DGX-1. For power consumption, four Cambricon-
F100 Computing Cards consume an average of 614.5 Watt at the
total, and eight V100-SXM2 GPU cards consume an average of
1986.5 Watt. Overall, Cambricon-F100 have attained 1.74x-8.58x
performance, 2.82x on average, compared to DGX-1.

On deep learning tasks, Cambricon-F100 improved the opera-
tional intensity by 37% and 33% for VGG-16 and RESNET-152,
respectively, when compared to DGX-1. The operational intensity
benefits from greater sub-problem scale, i.e. from larger batch size

Table 8: Hardware characteristics comparison.
Chip Cam-F1 Cam-F100 1080Ti V100 DaDN [37] TPU [40]

ISA type FISA FISA SIMD SIMD VLIW CISC
Technology 45nm 45nm 16nm 12nm 28nm 28nm
Type Cam-F Cam-F GPU GPU ASIC ASIC
Memory type eDRAM eDRAM SRAM SRAM eDRAM SRAM
Memory Size 16 MB 448 MB 12.8 MB 33.5 MB 36 MB 28 MB
Peak Perf. (Tops) 14.9 119 10.6 125 5.58 92

Area (mm2) 29 415 471 815 67 (� 331)
Power (W) 4.94 42.87 - - 15.97 40
Power efficiency
(Tops/W)

3.02 2.78 - - 0.35 2.3

Area efficiency
(Tops/mm2)

0.51 0.29 0.02 0.15 0.08 0.28

Card Cam-F1 Cam-F100 1080Ti V100 DaDN TPU

Dies 1 2 1 1 - 1
DRAM size 32 GB 32 GB 11 GB 16 GB - 8 GB
Peak Perf. (Tops) 14.9 238 10.6 125 - 92
Power (W) 90.19 167.22 199.90 248.32 - -

used. GPU performance does not always increase with batch size,
which caused the best batch size choosing on GPU is smaller than
on Cambricon-F. The broadcasting optimization of Cambricon-F
improved operational intensity even further.

On machine learning tasks, DGX-1 achieves up to 85x higher
operation intensity when compared Cambricon-F100. This differ-
ence is caused by the implicit management of intermediate memory
in Cambricon-F. In Cambricon-F, programmers do not manipulate
on memories except the main memory explicitly, Cambricon-F will
write the intermediate result after each instruction back to the root
once the tensor transposition mechanics failed to forward the data,
which caused the traffic on root raised. For control intensive work-
loads as ML tasks in the benchmark, control flow always breaks the
FISA pipeline and data forwarding, forcing the intermediate results
written back to the root. K-NN and SVM have a relatively com-
plete essential computation block. For K-NN, calculating distances
between each pair of samples constituted � 95% of the total run-
time, and for SVM, the kernel between each pair of samples, which
is sufficiently operation-intensive, is calculated in each iteration.
Thus, their operational intensity on Cambricon-F is less affected. K-
MEANS and LVQ are also iterative algorithms as SVM is, but they
do not have an operation-intensive computation block in each itera-
tion, thus their operational intensity is more affected, which heavily
limited the performance attainable. Moreover, the significantly
smaller granularities of operations on these two benchmarks may be
insufficient to hide the control latency of Cambricon-F nodes, result-
ing in an even worse performance on Cambricon-F100 compared
to Cambricon-F1. With such a better operational intensity, DGX-1
has still shown a significant gap between attained performance and
the roofline, since the bottleneck of GPU system is between graphic
memories and chips. For K-MEANS and LVQ, GPU suffers from
the control flow either and showing an even worse performance.

7. DISCUSSION
GPU. GPUs have been the most commonly used accelerators for

machine learning workloads for their high performance. However,
the slowly increasing bandwidth started to limit the performance of
GPUs from five years ago. Figure 16 shows the sustained growth
of memory bandwidth and the number of cores for NVIDIA GPUs.
While the growth rate of memory bandwidth still maintains about
15% annually for last 10 years, the growth rate of the number of
cores has dramatically reduced—67.6% per year during 2009 to
2013 and 8.8% per year for last 5 years. GPUs can not simply
benefit from increasing peak performance (i.e., the number of cores)
for memory intensive workloads due to the bandwidth limitation. In
a GPU, all cores are designed to retrieve data directly from graphics
memory. In the scenario that two neighboring cores require the same
data, GPU will transfer that data twice on the graphics memory
bus inefficiently. To help reduce the duplicated memory accesses,
architects have put caches and memory compression mechanics on
GPU [53, 54]. But it did not solve the problem fundamentally.

Unlike GPU, Cambricon-F organized cores in a fractal way. The
intermediate nodes in Cambricon-F will serve as agents of leaf
cores, and combine memory requests from leaf cores as a greater
request, eliminating duplicated data traffics. By analysis of memory
bounded operational intensity, Cambricon-F reduces 73.4%∼98.8%
of the memory traffic between DRAM and chips when compared to
graphics memory traffic in GPU. In other words, Cambricon-F has
better scalability.

Comparing with ASIC accelerators. TPU adopted a systolic
architecture for deep learning workloads and thus decomposed the
communications in a systolic manner, which evenly distributed
among PEs. With a systolic array, one can also build a fractal

2009 2011 2013 2015 2017 2019

103

104

67.6%/year

8.8%/year

C
o
re
s

Cores

102

103

15.0%/year

B
a
n
d
w
id
th

(G
B
/
s)

Cores

Bandwidth

Figure 16: Growth in cores and bandwidth of NVIDIA GPUs
since 2009.

computer. However, the versatility is the major consideration that
we did not choose systolic fractal-computer in this paper. Despite
various machine learning techniques, Cambricon-F is able to support
any operation as long as it can be resolved as fractal operations.

DaDianNao placed all data involved in the computation in lo-
cal memory where data is transmitted onto the chip only once.
A similar effect happens in Cambricon-F when data fits in local
memory, where duplicated global memory accesses are replaced
by local memory accesses by tensor transposition. But unlike Da-
DianNao that its workload size is strictly limited by its memory
size, Cambricon-F is still able to support workload in any size with
fractal decomposition.

8. RELATED WORK
Machine learning accelerators. Due to the end of Moore’s Law

and Dennard Scaling, domain-specific accelerators designed for
machine learning, especially DNNs, have become hot topics of
computer architecture community in recent years. Many machine
learning workloads have high intrinsic parallelism to be exploited by
specific architecture. 15% of all papers on ISCA’16 are relevant to
DNN accelerators and increased further to 26% on ISCA’18. Most
recent works are included in [55–61].

Yunji Chen et al. proposed the DianNao family of machine learn-
ing accelerators [21, 22, 37–39], which minimizes memory accesses
to achieve both high performance and low power consumption. Yu-
Hsin Chen et al. proposed Eyeriss [23] accelerator for deep CNNs
which adopts a reconfigurable data path and running-length com-
pression to skip zeros in the data, both to minimize memory access.
Google’s TPU [40] adopts a systolic array of PEs as its computing
component to eliminate the requirement of local memory on PEs.
Many previous works have shown that minimizing memory accesses
is essential for machine learning accelerators, but have not quantized
the effects of their efforts to reduce memory accesses.

Machine learning computers. Akhil Arunkumar et al. proposed
MCM-GPU [62] to continue the scalability of monolithic GPU. By
designing memory system and integration, MCM-GPU proposed
a multi-chip module of GPUs with interconnections and caches
showing that the performance of a multilayered GPU system can be
comparable to a similarly sized, monolithic GPU. Both MCM-GPU
and Cambricon-F provided a user-transparent extension to system
scalability. Compared to Cambricon-F100 which also has a similar
module—a computing card composing two chips, the control of
MCM-GPU is fine-grained and heterogeneous while Cambricon-
F100 remained homogeneous.

As the state-of-the-art GPU system, DGX-1 [15] was originally
launched by NVIDIA in 2016 featuring eight NVIDIA Tesla P100
GPUs, then refreshed with new NVIDIA Tesla V100 GPUs which
are particularly designed for deep learning acceleration. Compared

to Cambricon-F100, the eight GPUs in DGX-1 are connected in a
hybrid cube mesh network by NVLink, while the interconnection of
Cambricon-F100 nodes is limited within parent-to-children paths,
forming an H-tree topology. Building interconnection among sibling
nodes for Cambricon-F may further improve performance, we left
this exploration for future works.

ISA for heterogeneous systems. Recent research also address
the programming productivity issue with new ISA. Venkat et al. [63]
proposed Composite-ISA which constitutes a composite ISA super-
set with multi-ISA for heterogeneous multicores, while Cambricon-
F uses a unified ISA for multi systems with different scales.

9. CONCLUSION
In this paper, we propose Cambricon-F, machine learning comput-

ers with fractal von Neumann architecture and the same ISA, aiming
to address the emerged critical issue that hinders the deployment of
machine learning computers, i.e., programming productivity, includ-
ing both programming itself and software stack development. We
thoroughly analyze machine learning techniques for fractal compu-
tation and solve the three different types of fractal operation in our
Cambricon-F architecture design. Cambricon-F features the frac-
tal computing that iteratively decomposes an instruction on it into
several instructions on low-layer sub-nodes. Thus, achieving easy-
programming and high-efficiency simultaneously. Our results show
that Cambricon-F achieves 5.14x, 2.82x better performance, 11.39x,
8.37x better efficiency on average, with 93.8%, 74.5% smaller area
costs when comparing against 1080Ti and V100 GPU, respectively.
With the unified ISA and code for high programming productiv-
ity, Cambricon-F is also able to achieve better performance and
efficiency.

10. ACKNOWLEDGEMENT
This work is partially supported by the National Key Research and

Development Program of China (under Grant 2017YFA0700900,
2017YFA0700902, 2017YFA0700901, 2017YFB1003101), the NSF
of China (under Grants 61432016, 61532016, 61672491, 61602441,
61602446, 61732002, 61702478, 61732007 and 61732020), Beijing
Natural Science Foundation (JQ18013), the 973 Program of China
(under Grant 2015CB358800), National Science and Technology
Major Project (2018ZX01031102), the Transformation and Transfer
of Scientific and Technological Achievements of Chinese Academy
of Sciences (KFJ-HGZX-013), Key Research Projects in Frontier
Science of Chinese Academy of Sciences (QYZDB-SSW-JSC001)
and Strategic Priority Research Program of Chinese Academy of
Science (XDB32050200, XDC01020000).

11. REFERENCES
[1] Google Inc., “Cloud vision: Derive insight from your images

with our powerful pretrained API models or easily train
custom vision models with AutoML Vision.”
https://www.ibm.com/thought-leadership/summit-
supercomputer/.

[2] B. Jiang, R. Luo, J. Mao, T. Xiao, and Y. Jiang, “Acquisition
of localization confidence for accurate object detection,”
Lecture Notes in Computer Science, p. 816–832, 2018.

[3] A. Krizhevsky, G. E. Hinton, I. Sutskever, and G. E. Hinton,
“ImageNet Classification with Deep Convolutional Neural
Networks,” tech. rep., 2012.

[4] Google Inc., “Cloud speech-to-text: Speech-to-text conversion
powered by machine learning and available for short-form or
long-form audio.” https://cloud.google.com/speech-to-text/.

[5] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and
K. Kavukcuoglu, “Wavenet: A generative model for raw
audio,” arXiv preprint arXiv:1609.03499, 2016.

[6] Amazon, “Easily recognize famous individuals and celebrities
using Amazon Rekognition.”
https://console.aws.amazon.com/rekognition/home.

[7] E. Zhou, Z. Cao, and J. Sun, “Gridface: Face rectification via
learning local homography transformations,” Lecture Notes in
Computer Science, p. 3–20, 2018.

[8] Google Inc., “CLOUD VIDEO INTELLIGENCE: Search and
discover your media content with Cloud Video Intelligence.”
https://cloud.google.com/video-intelligence/.

[9] T. Mei and C. Zhang, “Deep learning for intelligent video
analysis,” October 2017.

[10] S. Chaudhuri, G. Theocharous, and M. Ghavamzadeh,
“Personalized advertisement recommendation: A ranking
approach to address the ubiquitous click sparsity problem,”
CoRR, vol. abs/1603.01870, 2016.

[11] T. Mahlmann, A. Drachen, J. Togelius, A. Canossa, and G. N.
Yannakakis, “Predicting player behavior in Tomb Raider:
Underworld,” in Proceedings of the 2010 IEEE Conference on
Computational Intelligence and Games, pp. 178–185, Aug
2010.

[12] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou,
A. Huang, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen,
F. Hui, L. Sifre, G. V. D. Driessche, T. Graepel, and
D. Hassabis, “Mastering the game of Go without human
knowledge,” Nature, vol. 550, 2017.

[13] Cambricon, “Cambricon 1H provides strong AI computing in
Huawei Kirin 980.”

[14] Apple Inc., “Get Ready for Core ML 2.”
https://developer.apple.com/machine-learning/.

[15] NVIDIA Corporation, “NVIDIA Tesla V100 GPU
Architecture,” 2018. https://images.nvidia.com/content/volta-
architecture/pdf/volta-architecture-whitepaper.pdf.

[16] NVIDIA Corporation, “NVIDIA DGX-2H,” 2018.
https://www.nvidia.com/content/dam/en-
zz/es_em/Solutions/Data-Center/dgx-2/dgx-2h-datasheet-us-
nvidia-841283-r6-web.pdf.

[17] Google Inc., “What makes TPUs fine-tuned for deep
learning?,” 2018.
https://cloud.google.com/blog/products/ai-machine-
learning/what-makes-tpus-fine-tuned-for-deep-learning.

[18] IBM, “The most powerful computers on the planet.”
https://www.ibm.com/thought-leadership/summit-
supercomputer/.

[19] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello,
and Y. LeCun, “NeuFlow: A runtime reconfigurable dataflow
processor for vision,” in IEEE Computer Society Conference
on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 109–116, Ieee, jun 2011.

[20] S. Venkataramani and V. Chippa, “Quality programmable
vector processors for approximate computing,” in Proceedings
of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, no. i, pp. 1–12, 2013.

[21] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and
O. Temam, “DianNao: a small-footprint high-throughput
accelerator for ubiquitous machine-learning,” in Proceedings
of the 19th international conference on Architectural support
for programming languages and operating systems (ASPLOS),
(Salt Lake City, UT, USA), pp. 269–284, 2014.

[22] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng,
X. Zhou, and Y. Chen, “PuDianNao : A Polyvalent Machine
Learning Accelerator,” in Proceedings of the 20th
international conference on Architectural support for
programming languages and operating systems (ASPLOS),
pp. 369–381, 2015.

[23] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial
Architecture for Energy-Efficient Dataflow for Convolutional
Neural Networks,” in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA),
pp. 367–379, 2016.

[24] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst,
“Envision: A 0.26-to-10TOPS/W subword-parallel
dynamic-voltage-accuracy-frequency-scalable Convolutional
Neural Network processor in 28nm FDSOI,” IEEE
International Solid-State Circuits Conference, vol. 60,
pp. 246–247, 2017.

[25] A. Biswas and A. P. Chandrakasan, “Conv-RAM: An
energy-efficient SRAM with embedded convolution
computation for low-power CNN-based machine learning
applications,” in IEEE International Solid-State Circuits
Conference, vol. 61, pp. 488–490, 2018.

[26] NVIDIA Corporation, “Parallel Thread Execution ISA
Version 6.2,” 2018. https://docs.nvidia.com/cuda/parallel-
thread-execution/index.html.

[27] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, et al.,
“Tensorflow: a system for large-scale machine learning.,” in
OSDI, vol. 16, pp. 265–283, 2016.

[28] Huawei, “Huawei Launches HiAI 2.0, Commits to Creating
the Ultimate AI App Experience.”
https://www.huawei.com/en/press-
events/news/2018/11/huawei-hiai-2-ultimate-ai-app-
experience.

[29] W. Sierpiński, “Sur une courbe cantorienne qui contient une
image biunivoque et continue de toute courbe donnée,” 1916.

[30] M. T. Barlow and R. F. Bass, “The construction of brownian
motion on the sierpinski carpet,” Ann. Inst. H. Poincaré,
vol. 25, no. 1989, pp. 225–257, 1989.

[31] W. Wzr, V. Surfhvv, L. V. Ghsor, H. G. Rq, K. Hqg, D. Rq,
P. D. Q. Fkdoohqjlqj, P. Ohduqlqj, H. J. L. W. Wdnhv,
W. Zhhnv, W. R. Wudlq, R. Q. Irxu, and K. Hqg, “Towards
Pervasive and User Staisfactory CNN across GPU
Microarchitecture,” in Proceedings of The 23rd IEEE
Symposium on High Performance Computer Architecture
(HPCA), 2017.

[32] X. Zhang, C. Xie, J. Wang, W. Zhang, and X. Fu, “Towards

Memory Friendly Long-Short Term Memory Networks (
LSTMs) on Mobile GPUs,” in Proceedings of the 51st
Annual IEEE/ACM International Symposium on
Microarchitecture, vol. 1537085, 2018.

[33] P. Hill, A. Jain, M. Hill, B. Zamirai, C.-H. Hsu, M. A.
Laurenzano, and S. Mahlke, “DeftNN: Addressing
Bottlenecks for DNN Execution on GPUs via Synapse Vector
Elimination and Near-compute Data Fission,” in Proceedings
of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 786–799, 2017.

[34] J. Park, H. Sharma, D. Mahajan, J. K. Kim, P. Olds, and
H. Esmaeilzadeh, “Scale-out acceleration for machine
learning,” in Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 367–381,
2017.

[35] Y. Shen, M. Ferdman, and P. Milder, “Maximizing CNN
Accelerator Efficiency Through Resource Partitioning,” in
Proceedings of the 44th Annual International Symposium on
Computer Architecture (ISCA’17), pp. 535–547, 2017.

[36] T. Chen, S. Srinath, C. Batten, and G. E. Suh, “An
Architectural Framework for Accelerating Dynamic Parallel
Algorithms on Reconfigurable Hardware,” in Proceedings of
the 51st Annual IEEE/ACM International Symposium on
Microarchitecture, no. 2, 2018.

[37] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,
T. Chen, Z. Xu, N. Sun, and O. Temam, “DaDianNao: A
Machine-Learning Supercomputer,” in Proceedings of the
47th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-47), pp. 609–622, 2015.

[38] Y. Chen, T. Chen, X. Zhiwei, and O. Temam, “DianNao
Family: Energy-Efficient Hardware Accelerators for Machine
Learning,” Communications of the ACM, vol. 57, no. 5, p. 109,
2014.

[39] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, X. Feng,
Y. Chen, and O. Temam, “ShiDianNao: Shifting Vision
Processing Closer to the Sensor,” in Proceedings of the 42nd
Annual International Symposium on Computer Architecture,
pp. 92–104, 2015.

[40] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers,
R. Boyle, P.-L. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley,
M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati,
W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu,
R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law,
D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. Mackean,
A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek,
E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter,
D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian,
H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang,
E. Wilcox, and D. H. Yoon, “In-Datacenter Performance
Analysis of a Tensor Processing Unit,” in Proceedings of the
44th Annual International Symposium on Computer
Architecture (ISCA’17), pp. 1–17, 2017.

[41] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A Large-Scale Hierarchical Image Database,” in
CVPR09, 2009.

[42] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and
T. Chen, “Cambricon : An Instruction Set Architecture for
Neural Networks,” 2016.

[43] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the
speed of neural networks on CPUs,” in Deep Learning and
Unsupervised Feature Learning Workshop, Neural
Information Processing Systems Conference (NIPS), 2011.

[44] H. Esmaeilzadeh, P. Saeedi, B. Araabi, C. Lucas, and
S. Fakhraie, “Neural Network Stream Processing Core (NnSP)
for Embedded Systems,” in 2006 IEEE International
Symposium on Circuits and Systems (ISCS), pp. 2773–2776,
Ieee, 2006.

[45] X. Sun and L. Ni, “Scalable problems and memory-bounded
speedup,” Journal of Parallel and Distributed Computing,
vol. 19, no. 1, pp. 27 – 37, 1993.

[46] S. Williams, A. Waterman, and D. Patterson, “Roofline: An
insightful visual performance model for multicore
architectures,” Commun. ACM, vol. 52, pp. 65–76, Apr. 2009.

[47] P. Flajolet and M. Golin, “Exact asymptotics of
divide-and-conquer recurrences,” in Automata, Languages
and Programming (A. Lingas, R. Karlsson, and S. Carlsson,
eds.), (Berlin, Heidelberg), pp. 137–149, Springer Berlin
Heidelberg, 1993.

[48] M. Poremba, S. Mittal, D. Li, J. S. Vetter, and Y. Xie,
“DESTINY: A tool for modeling emerging 3D NVM and
eDRAM caches,” in Proceedings of the 2015 Design,
Automation & Test in Europe Conference, DATE ’15, (San
Jose, CA, USA), pp. 1543–1546, EDA Consortium, 2015.

[49] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” CoRR,
vol. abs/1409.1556, 2014.

[50] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

[51] NVIDIA Corporation, “CUDA Toolkit Documentation
v9.0.176,” 2018. https://docs.nvidia.com/cuda/archive/9.0/.

[52] NVIDIA Corporation, “NVIDIA Deep Learning SDK,” 2018.
https://docs.nvidia.com/deeplearning/sdk/index.html.

[53] V. Sathish, M. J. Schulte, and N. S. Kim, “Lossless and lossy
memory I/O link compression for improving performance of
GPGPU workloads,” in Parallel Architectures and
Compilation Techniques (PACT), 2012 21st International
Conference on, pp. 325–334, IEEE, 2012.

[54] NVIDIA Corporation, “NVIDIA Tesla P100,” 2017.
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-
architecture-whitepaper.pdf.

[55] P. Srivastava, M. Kang, S. K. Gonugondla, S. Lim, J. Choi,
V. Adve, N. S. Kim, and N. Shanbhag, “PROMISE: An
end-to-end design of a programmable mixed-signal
accelerator for machine-learning algorithms,” in 2018
ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), pp. 43–56, June 2018.

[56] F. Tu, W. Wu, S. Yin, L. Liu, and S. Wei, “RANA: Towards
efficient neural acceleration with refresh-optimized embedded
DRAM,” in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), pp. 340–352,
June 2018.

[57] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer,
D. Sylvester, D. Blaaauw, and R. Das, “Neural cache:
Bit-serial in-cache acceleration of deep neural networks,” in
2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), pp. 383–396, June 2018.

[58] K. Hegde, J. Yu, R. Agrawal, M. Yan, M. Pellauer, and
C. Fletcher, “UCNN: Exploiting computational reuse in deep
neural networks via weight repetition,” in 2018 ACM/IEEE

45th Annual International Symposium on Computer
Architecture (ISCA), pp. 674–687, June 2018.

[59] V. Akhlaghi, A. Yazdanbakhsh, K. Samadi, R. K. Gupta, and
H. Esmaeilzadeh, “SnaPEA: Predictive early activation for
reducing computation in deep convolutional neural networks,”
in 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), pp. 662–673, June 2018.

[60] E. Park, D. Kim, and S. Yoo, “Energy-efficient neural network
accelerator based on outlier-aware low-precision computation,”
in 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), pp. 688–698, June 2018.

[61] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and
H. Esmaeilzadeh, “Bit fusion: Bit-level dynamically
composable architecture for accelerating deep neural network,”
in 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), pp. 764–775, June 2018.

[62] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi,
O. Villa, A. Jaleel, C. Wu, and D. Nellans, “MCM-GPU:
Multi-chip-module GPUs for continued performance
scalability,” in 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), pp. 320–332,
June 2017.

[63] A. Venkat, H. Basavaraj, and D. M. Tullsen, “Composite-ISA
Cores: Enabling Multi-ISA Heterogeneity Using a Single
ISA,” in 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 42–55, Feb
2019.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

