
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Breaking the Interaction Wall: A DLPU-centric
Deep Learning Computing System

Zidong Du, Member, IEEE, Qi Guo, Member, IEEE, Yongwei Zhao, Xi Zeng, Ling Li, Limin Cheng,
Zhiwei Xu, Senior Member, IEEE, Ninghui Sun, Member, IEEE, and Yunji Chen, Senior Member, IEEE

Abstract—Due to the broad successes of deep learning, many CPU-centric artificial intelligent computing systems employ specialized
devices such as GPUs, FPGAs, and ASICs, which can be named as Deep Learning Processing Units (DLPUs), for processing
computation-intensive deep learning tasks. The separation between the scalar control operations mapped on CPUs and the vector
computation operations mapped on DLPUs causes the frequent and costly interactions between CPUs and DLPUs, leading to the
Interaction Wall. Moreover, the increasing algorithm complexity and DLPU computation speed would further aggravate the interaction
wall substantially.
To break the interaction wall, we propose a novel DLPU-centric deep learning computing system consisting of an exception-oriented
programming (EOP) model and the architectural support of CPULESS DLPU. The EOP model processes scalar control operations of a
deep learning task as exception handlers to maximally avoid stalling the crucial and dominated vector computation operations.
Together with the CPULESS DLPU which integrates a scalar processing unit (SPU) for scalar control operations and the parallel
processing unit (PPU) for vector computation operations into a fused pipeline, the proposed DLPU-centric system can cost-effectively
leverage the EOP model to execute the two kinds of operations simultaneously without disturbing each other. Compared with a
state-of-the-art commodity CPU-centric system with discrete V100 GPU via PCIe bus, experimental results show that our DLPU-centric
system achieves 10.30× better performance and 92.99% energy savings, respectively. Moreover, compared with a CPU-centric
version of DLPU system where the SPU serves as the host with integrated PPU, the proposed DLPU-centric system still achieves
15.60% better performance from avoided interactions.

Index Terms—Neural net accelerators, system architectures, interaction wall.

F

1 INTRODUCTION

DUE to the successful applications in various fields
(including image/speech recognition [1], natural lan-

guage processing [2], and game strategy [3]), deep learning
(DL) has become an active field in both academia and
industry. To improve the efficiency of processing DL algo-
rithms, many DL computing systems have been proposed,

• Zidong Du and Yongwei Zhao are with the State Key Laboratory of Com-
puter Architecture, Institute of Computing Technology, Chinese Academy
of Sciences, Beijing 100190, China, and also with Cambricon Technologies,
Beijing, China. E-mail: {duzidong, zhaoyongwei}@ict.ac.cn.

• Qi Guo is with the State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing
100190, China. E-mail: guoqi@ict.ac.cn.

• Xi Zeng is with the State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing
100190, China, the University of Chinese Academy of Sciences, Beijing
100049, China, and also with Cambricon Technologies, Beijing, China.
E-mail: zengxi@ict.ac.cn.

• Ling Li and Limin Cheng are with Institute of Software, Chi-
nese Academy of Sciences, Beijing 100190, China. E-mail: {liling,
chenglimin}@iscas.ac.cn.

• Zhiwei Xu and Ninghui Sun are with the State Key Laboratory of Com-
puter Architecture, Institute of Computing Technology, Chinese Academy
of Sciences, Beijing 100190, China, and also with the University of
Chinese Academy of Sciences, Beijing 100049, China. E-mail: {zxu,
snh}@ict.ac.cn.

• Yunji Chen is with the State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing
100190, China, and also with the University of Chinese Academy of
Sciences, Beijing 100049, China, and also with the Institute of Brain-
Intelligence Technology, Zhangjiang Laboratory (BIT, ZJLab), Shang-
hai Research Center for Brain Science and Brain-Inspired Intelligence
(Shanghai Brain—AI), CAS Center for Excellence in Brain Science and
Intelligence Technology (CEBSIT), Beijing, China. E-mail: cyj@ict.ac.cn.

Fig. 1. Typical deep learning computing system architecture: (a) DGX-2;
(b) TPU; (c) Brainwave [12].

which adopt CPUs as the central controller, and integrate
specialized devices to accelerate the major computation,
such as GPU, FPGA [4], [5], [6], and ASICs [7], [8], [9],
[10], [11], etc. Such systems have been deployed in various
scenarios from mobile devices to cloud servers. For example,
Amazon released DeepLens, the world’s first deep learning
embedded video camera. Google announced TPU v3 based
computing system and provides cloud computing services
reaching 100 Petaflops peak performance. NVIDIA released
DGX-1/DGX-2 server with 8/16 V100 GPUs for DL. IBM an-
nounced Summit, an AI supercomputer with 27648 NVIDIA
V100 GPUs.

As shown in Fig. 1, existing deep learning computing
systems are essentially CPU-centric, where the host CPUs
act as the masters for sending/receiving both control and
data information to/from the DLPUs, and the DLPUs act as
the slaves for vector computation accordingly. The separa-
tion between the execution of scalar control operations on
CPU and the execution of vector computation operations on
DLPU resulted in frequent and costly interactions between
CPU and DLPU, which have become the key reason for

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

CPU

DLPU

...

...

...

...

OS Data Program

Runtime

Scalar Execution

Vector ExecutionMemcpy

Context Switch

Memcpy Memcpy

F
in

is
h

S
ta

rt
Interactions:

Data exchange

Control signaling

CPU

DLPU

...

...

...

...

OS

Data Program

Runtime

Scalar Execution

Vector Execution

Context Switch

Write Memory

F
in

is
hS
ta

rt

DLPU

Vector Execution Write Memory

... ...
Scalar Execution F

in
is

h

S
ta

rt

(a) CPU-centric DL sytem with CPU and discrete DLPU (b) CPU-centric DL SoC with integrated DLPU (c) DLPU-centric DL system
Data Program

Fig. 2. (a) A typical processing flow in a CPU-centric DL computing system which consists of CPU and discrete DLPU: the CPU-DLPU interactions
include data exchange and control signaling. (b) The processing flow in a CPU-centric DL computing system which integrates the DLPU: the CPU-
DLPU interactions include control signaling. (c) The ideal processing flow in a DLPU-centric DL computing system: DLPU processes the DL tasks
without interactions.

the system inefficiency. As illustrative examples on a CPU
system with the K40 GPU, when running Faster R-CNN
[13] for inferencing 100 images, only 43.9% of the total time
is consumed by GPU computation, where the rest time is
mainly consumed by the 1310 CPU-GPU interactions; when
training GCN (Graph Convolutional Network) [14] with 200
iterations, only 4.8% of the total time is consumed by GPU
computation, where the rest time is consumed by more than
92k CPU-GPU interactions.

Specifically, the CPU-DLPU interaction can be roughly
classified into two categories: data exchange and control sig-
naling. The exchanged data include algorithm inputs/out-
puts, intermediate results, etc; and the control signaling
includes kernel launch, interrupt handling, etc. As shown
in Fig. 2(a), to perform a DL task on a typical CPU-centric
DL computing system, the host CPU needs to load the data
and device program to the host memory first and then send
to the DLPU for the major computation of vector operations.
During the computation, the DLPU has to interact with the
host CPU to perform the scalar control operations. After
finishing the computation, the DLPU notifies the host CPU
and sends the results to the host memory. Actually, the data
exchange speed is typically limited by the bandwidth of IO
subsystems (e.g., the PCIe bus for discrete DLPUs or the AXI
bus for integrated DLPUs), and the control signaling speed
is mainly restricted by the processing speed of relatively
complicated software stack (OS kernel, driver, and runtime,
etc.) on the host CPU. Apparently, there exists disparity
between the processing rate of CPU-DLPU interaction and
the computation speed of DLPU, which can be termed as
interaction wall1 in a way analogous to memory wall. In fact,
the interaction wall would be further aggravated for two
reasons. The first reason is that the increasing algorithm
complexity incurs more and more CPU-DLPU interactions.
The second reason is that the improvement of interaction
speed between CPU and DLPU cannot keep pace with the
computation speed of DLPUs.

To solve the ever-increasing challenge resulted from the
interaction wall, an intuitive idea is to merge the DLPU into
CPU (such as an additional SIMD functional unit) [15], [16],
so as to eliminate CPU-DLPU data exchange interactions with
shared memory space, see Fig. 2(b). However, it still suffers
from the control signaling interactions, which fragmentize the
vector computations on the DLPU, leading to significantly
low DLPU utilization. Besides, CPU is not an ideal host

1. Note that the interaction wall is more than IO bottleneck, since
interaction efficiency is not only determined by the native IO speed
but also the software stack and processing ability of the host CPU.

for merging DLPU, which makes the merged SIMD-style
architecture both cost-ineffective and energy-ineffective. The
reason is because modern CPU lacks of architectural support
for DL tasks, e.g., stream data path, programmer-visible
buffer, dependency checking logic of vector operands, etc.,
but spends most area and energy consumption thriving for
instruction-level parallelism improvement, e.g., branch pre-
dictor, out-of-order scheduler, renaming registers, complex
memory hierarchy for random memory accesses, etc. [17],
which are less useful for data-level paralleled DL tasks.

Therefore, from the perspective of processing efficiency,
a DLPU-centric DL computing system where the DLPU
takes over the scalar control operations can be much more
effective. On one hand, a DLPU has all architectural sup-
ports to effectively execute vector computation operations
of DL tasks. And on the other hand, it is cost-effective to
add the necessary support for executing scalar control oper-
ations of DL tasks. However, beyond merely enhancing the
DLPU with the scalar execution ability, the key challenge in
constructing a highly efficient DLPU-centric DL computing
system is ensuring the vector data flow to continuously
execute without interruptions from the scalar operations for
control and system management. As shown in Fig. 2(c), an
ideal DLPU-centric DL computing system is able to process
the scalar control operations in parallel with continuously
vector data flow without interactions.

In this paper, we propose a novel DLPU-centric deep
learning computing system consisting of the exception-
oriented programming (EOP) model and corresponding archi-
tectural support of CPULESS microarchitecture. The EOP
model is proposed to separate the vector data flow for
continuous execution without inter-disturbance from the
scalar control flow. Specially, in the EOP model, scalar
control flow are organized as exceptions embedded into
the vector data flow, which will be executed in parallel
with the vector operations. Specifically, when the vector
unit is busy, in-flight vector instructions block the pipeline
for following instructions to issue (no matter the type of
the following instructions are, scalar or vector). Then the
EOP model allows the CPULESS DLPU to load a bunch
of scalar operations as exception, utilizing the idle fetcher,
decoder and scalar unit. The CPULESS microarchitecture is
proposed to effectively support the EOP model. Particularly,
CPULESS adopts a fused pipeline where a dedicated scalar
processing unit (SPU) for scalar control flow and parallel
processing unit (PPU) for vector data flow are integrated in a
same pipeline with forwarding data paths to eliminate the
interactions. To avoid the SPU disturbing the PPU, where

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

(a) Net

CPU

DLPU (GPU/ACC/...)

DDR

Disk Other

I/O

Data bus
Address bus
Control bus
I/O Control bus

C
UP
U

S
P
M

PCIE

(b)

Disk
SMgr

Net
NMgr

DDR
MMgr

CPULESS

Fig. 3. The (a) CPU-centric (b) DLPU-centric architecture.

the interrupts/exceptions to SPU (e.g., control signaling)
may frequently squash in-flight vector instructions in PPU
(which may have executed for ∼ 105 cycles), CPULESS puts
issued in-flight vector instructions in a dedicated vector
queue which is not affected by interrupts/exceptions to the
main instruction pipeline and the SPU.

In this paper, we made the following contributions.
• We propose a novel DLPU architecture, which enables

the DLPU-centric deep learning computing system to
cost-effectively break the interaction wall caused by the
separation of scalar control operations on CPU and vector
computation operation on traditional DLPU.

• We propose an exception-oriented programming model
to ensure the continuous execution of vector data flow.
The EOP model enables a new execution model which
execute scalar control operations of a DL task in the SPU
as exception handlers. Whenever the pipeline is blocked
by the PPU, the scalar operations can still execute on the
SPU as exceptions without disturbance.

• We propose a highly efficient microarchitecture for CPU-
LESS that can allow the simultaneous execution of scalar
control operations on SPU and vector computation oper-
ations on PPU, which can significantly reduce the distur-
bance from the SPU to the PPU.

• We build the first DLPU-centric deep learning computing
system based on the CPULESS DLPU and the EOP model,
which is much more cost-effective than traditional CPU-
centric deep learning systems. Experiments show that the
DLPU-centric system achieves 10.30× better performance
and 92.99% energy savings compared with the state-of-
the-art commodity CPU-centric system with discrete V100
GPU via PCIe bus. Compared with a CPU-centric version
of DLPU system where the SPU serves as the host with
integrated PPU, the proposed DLPU-centric system still
achieves 15.60% better performance from avoided interac-
tions, which shows the effectiveness of EOP.

2 INTERACTION WALL IN CPU-CENTRIC SYSTEMS

In this section, we first introduce the overall architecture
of CPU-centric deep learning computing systems. Then
we will introduce the interaction wall in CPU-centric sys-
tems, and use experimental results to demonstrate the non-
negligible performance impact of the interaction wall.

2.1 CPU-centric systems
Currently, as shown in Fig. 3(a), mainstream DL computing
systems are CPU-centric, where the host CPUs act as the
masters for controlling the employed DLPU (and all other
peripheral devices) through interfaces such as the PCIe bus
(i.e., discrete DLPU) and AXI bus (i.e., integrated DLPU),
see Table 1. In such CPU-centric DL computing systems,

CPUs and DLPUs play different roles in processing DL tasks
including not only vector computation operations but also
scalar control operations. CPUs have a complex dynamic
instruction pipeline and memory hierarchy developed for
irregular scalar computation but have relatively low peak
performance. Thus CPUs are normally only responsible for
scalar control operations of DL tasks. Operating systems
(OS), runtime and DL frameworks are also deployed on
CPUs to provide controlling, programming, runtime sup-
port, and resource management for the system. On the
other hand, DLPUs (especially ASIC [7], [9], [11]) have high
vector computation speed but are incapable of dynamically
controlled execution. Hence, DLPUs are responsible for only
vector computation operations. Such separate operation
mapping in CPU-centric DL systems inevitably introduces
frequent and costly interactions between CPUs and DLPUs,
which makes the interaction wall a severe problem.

2.2 Interaction wall: A Faster R-CNN example
We demonstrate the interaction wall on commodity
mainstream CPU-centric systems (including CPU+discrete
DLPU, CPU+integrate DLPU) with a representative state-of-
the-art deep learning algorithms (i.e. Faster R-CNN). Fig. 4
shows the entire processing flow of Faster R-CNN. The
Faster R-CNN algorithm processes an image first through
a deep convolutional network (Deep ConvNet) and a re-
gion proposal network (RPN) to get the feature maps and
several region-of-interest (ROI) proposals, respectively. For
each ROI, a pooling layer is applied to extract a fixed-
length feature vector, which is used to get two outputs, i.e.,
the softmax probability and the bounding box positions.
In ROI pooling, instead of pooling over the entire feature
map, pooling is performed on only a few windows of the
entire feature map, where both the number and sizes of
pooling windows are dynamically determined based on
execution results. Thus the control flow of ROI pooling
must be dynamically decided. Current CPU-centric systems
have two possible solutions: either the CPU performs the
entire ROI pooling, or the CPU performs the static control
part of ROI pooling (window selection) and leaves only
the vector computation part (pooling) on the DLPU. Both
solutions incur massive interactions, leading to inefficiently
processing of Faster R-CNN.

2.2.1 CPU-centric DL system with discrete DLPU
We profile the execution of CPU-centric DL system with
NVPROF and NVVP. Fig. 5 (middle-left) shows the ex-
ecution breakdown of the Faster R-CNN inference stage
on the CPU-centric system with a discrete NVIDIA K40
GPU. In this example, Faster R-CNN is used for processing

TABLE 1
Examples of deep learning computing systems.

Example Scale Host CPU DLPU Interface

TPU cloud Cloud Intel Skylake TPU accelerator PCIe
Brainwave [18] Cloud Intel Xeon Stratix 10 FPGA PCIe
DGX-2 Server Intel Xeon V100 GPU PCIe
Summit Supercomputer Power9 V100 GPU PCIe
Tesla Autopilot Work station Arm A72 Drive PX-2 GPU AXI
HUAWEI mate20 Mobile device Kirin 980 NPU accelerator AXI
DeepLen IoT devices Intel Atom Intel Gen9 graphics AXI

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Input

Deep

Region

Feature maps

Region of

ROI pooling

Softmax outputs

Bounding boxes

ConvNet

Interest

Proposal
Network

For each ROI

Fig. 4. The execution process of Faster R-CNN.

100 images with batch size as 1. Only 43.90% of the total
execution time is spent on the DLPU computation, i.e., the
DLPU utilization rate is only 43.90%. The 1310 CPU-DLPU
interactions take 22.30% of total time, and GPU startup
takes 32.22% of the total time, which mainly includes the
execution of the high-level framework and GPU runtime. It
is worth noting that the GPU startup is executed on the host
CPU and can also be regarded as control signaling.

2.2.2 CPU-centric DL system with integrated DLPU

Fig. 5 (top-left) shows the execution breakdown of the Faster
R-CNN inference state on the CPU-centric system with a
integrated DLPU, i.e., the Jetson TX2 whose CPU SOC inte-
grates a 256-core Pascal GPU. With the same configuration,
it achieves a 47.40% DLPU utilization. Obviously, with an
integrated DLPU, the data exchange interaction overhead can
be largely removed: therefore, the DLPU utilization of Jetson
TX2 is higher than CPU+K40 GPU. However, the 65398
CPU-DLPU interactions not only take a large proportion of
the total execution time (40.72%) but also divide the entire
GPU computation into over tens of thousands small frag-
ments, which hampers the efficiency of GPU computation
(69.16% utilization during working time).

2.3 Rising the interaction wall

Rather than addressed or alleviated, in fact, the interaction
wall in CPU-centric DL computing systems is rising rapidly
because of the fast developed DL algorithms and DLPUs.

Improving the capability of DLPUs. While the compu-
tation speed of DLPUs keeps increasing dramatically, the
interaction wall is exacerbated. The reason is because the
interaction speed does not increase comparably with the
DLPU computation speed. Therefore, according to the Amd-
hal’s Law, the accelerated execution time T2 can be formed
as T2 = αT1 + (1 − α)T1/p + Tinteraction where T1 is the
original sequential execution time, α is the scalar execution
ratio, p is the speedup achieved by parallel execution, and
Tinteraction is the overhead of interaction. As the p can be
improved drastically by improving the capability of DLPUs,
the Tinteraction starts to dominate the total execution time.
The disparity between the peak performance of GPUs and
the IO speed (including the PCIe and QPI interconnection)
continues to increase significantly. Particularly, we conduct
experiments on such state-of-the-art GPU (NVIDIA V100),
which has 3.66× higher peak performance than K40. As a
result, with the same PCIe Gen3 interface, only 12.8% of the
total time is spent on the GPU computation (vs. 43.9% on
K40), while 55.8% is spent on GPU startup (vs. 32.22% on
K40), as shown in Fig. 5 (bottom-left).

Increasing complexity of DL algorithms. Early deep
learning algorithms (e.g., AlexNet [19] and VGG [20]) con-
tain massive vector/matrix operations and quite few scalar
control operations. However, state-of-the-art industrial deep
learning algorithms (e.g., Faster R-CNN [13], Mask R-CNN
[21], BigGAN [22], and BERT [23]) require much more dy-
namic controlling than their predecessors, where the scalar
control operations play an important role. Similarly, accord-
ing to the Amdhal’s Law, the accelerated time T2 starts
to be dominated by the scalar part, i.e, the α is increased
for these new DL algorithms. Particularly, we also con-
duct experiments on another state-of-the-art deep learning
algorithm, i.e., Graph Convolution Networks (GCN) [14],
which has been widely used in analyzing social networks,
knowledge graphs, protein-interaction networks, and so on.
As shown in Fig. 5(middle-right), when running on the K40
GPU system, there are 92k interactions in 200 epochs GCN
training. Regarding the execution time, only 4.8% of the
total time is spent on the DLPU computation (vs. 43.9% on
Faster R-CNN), and 55.56% of the total time is spent on the
GPU startup (vs. 32.22% on Faster R-CNN). The rest of the
time includes data exchange between CPU and GPU, and
overhead of CUDA runtime. The DLPU utilization rate of
GCN is even much lower than that of Faster R-CNN since
the memory access and computation on each graph node are
dynamically controlled by graph edge information, which
incurs massive interactions between the DLPUs and CPUs.
Similar cases can be found on CPU+V100 and Jetson TX2,
see Fig. 5(top-right) and (bottom-right).

To further illustrate the impacts of the interaction wall,
we also conduct experiments on many different alternative
settings. For example, with max allocatable batch size on
K40, the DLPU utilization rate is only 65.8%; with multiple
DLPUs (i.e., four K40 GPUs), averagely only 49.4% of the
total time is spent on GPU computation. We can confirm that
the interaction wall is inevitable on existing CPU-centric
deep learning computing systems, which always leading to
a low DLPU utilization rate.

In summary, the interaction wall has significantly ham-
pered the efficiency of CPU-centric deep learning com-
puting systems, and will even more severely hamper the
efficiency in the future. To break the interaction wall, so-
ciety calls out for a new architecture for a deep learning
computing system.

3 FROM CPU-CENTRIC TO DLPU-CENTRIC

3.1 A DLPU-centric view
From the perspective of processing DL tasks, addressing
the interaction wall at root is to ensure the high utilization
of DLPU when processing the scalar executions in parallel
with the major computations of DL tasks. Therefore, an
ideal DL computing system should be able to ensure the
continuous execution of vector data flow without inter-
disturbance from the scalar control flow, i.e., addressing not
only the data exchange but also control signaling interactions.
Obviously, the CPU-centric system with integrated DLPU
solution can only address the data exchange interactions
by sharing the host memory between the host CPU and
the DLPU (Fig. 5(middle)). However, such simple solution
is unable to address the control signaling interactions and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

CPU/OS

DLPU runtime

Data exchange

DLPU computation

0 s 20 s 40 s 60 s 80 s 100 s 120 s 140 s 160 sTime:
Je

ts
on

K
40

V
10

0
Faster R-CNN

DLPU utilization(
GPU compute time

Total TimeGPU working time

GPU compute time)

0 s 5 s 10 s 15 s

GCN

Faster RCNN GCN

Jetson 69.16%/47.40% 60.17%/23.52%

K40 77.11%/43.90% 28.52%/4.80%

V100 36.96%/12.80% 9.61%/1.80%

Fig. 5. Execution timeline of deep learning algorithms on a CPU-centric system with a discrete K40 GPU, a discrete V100 GPU, and an integrated
GPU (Jetson TX2). The CPU-DLPU interactions in CPU+K40 cost 22.30% and 94.24% of total execution time on Faster R-CNN and GCN,
respectively; the numbers are 40.72% and 73.50% on Jetson TX2. GPU working time is the timespan from the starting of the first GPU activity to
the ending of the last GPU activity.

guarantee the high utilization of the DLPU, as the the scalar
control flow on the host CPU may stall the vector operations
on the DLPU. On the contrary, a DLPU-centric design princi-
ple where the DLPU takes over the scalar control operations
as the master could lead to a high efficient DL computing
system. A DLPU has all architectural supports to effectively
execute vector computation operations of DL tasks, and it
is cost-effective to add the necessary support for executing
scalar control operations of DL tasks into a DLPU.

3.2 The EOP model

Current programming models on CPU-centric DL comput-
ing systems take the vector data flow on DLPUs as excep-
tions. Therefore, programmers have to manage the vector
data flow as separated segments (e.g., kernels in GPU)
where the syscalls are invoked by the scalar control flow
to manage those segments. Even modern compilers try to
assist with asynchronous execution method, the execution
order is still maintained by the scalar control flow which
introduces unnecessary interactions. As a result, to support
the DLPU-centric design, the programming model should
also be DLPU-centric.

We propose a novel exception-oriented programming
(EOP) model to avoid the disturbance from scalar control
flow. In the EOP model, scalar control operations in a DL
task are written as exceptions, and the exception handlers
are embedded into the vector data flow. Please note that
the vector data flow may contain both vector instructions
and scalar instructions, while the scalar control flow only
contains scalar instructions. Therefore, the vector data flow
is processed on the DLPU continuously while the exceptions
of the scalar control flow are independent of vector opera-
tions and thus can be scheduled in parallel.

In Fig. 6, we provide the basic idea of EOP with the ab-
stract view of vector data flow and scalar control exceptions,
and an example code of ROI pooling. From the program-
mers’ view, the programmers only learn the two threads of
the DL task, i.e., the main thread which contains the major
computations of the DL task and the exception thread which
contains scalar computations packed as exceptions. In other
words, the programmers are required to write a workflow
mainly running on the PPU, and exceptions consisting of the
exception handlers (e.g., NMS()) which will be performed
on demands (when the PPU is busy while SPU is idle).
The basic intuition behind EOP is to schedule those scalar
exceptions to be executed in parallel with vector data flow
as early as possible, so those exceptions, i.e., scalar control,

NMS(0)

NMS(1)

NMS(2)

ROIP.(0)

ROIP.(1)

ROIP.(2)

NMS(0)

NMS(1)

NMS(2)

ROIP.(0)

ROIP.(1)

ROIP.(2)

Programmer’s view:

With EOP W/o EOP

m
ai

n

ex
ce

p
t

m
ai

n

sync

sync

sync

raise

raise

raise

// input/output image of the roi-pooling layer.
extern vector[1][38][61][1024] stage3_unit23;
extern vector[300][14][14][1024] roi_result;
int roi[6000][5]; // the sorted 6k roi regions.
...
int suppressed_by_nms[6000] = {0};
for (i = 0; i < 6000; i++) {
if (suppressed_by_nms[i]) continue;
// defining an exception handler to process NMS.
except NMS(i) {
for (j = i + 1; j < 6000; j++) {
// `JaccardOverlap` is pure scalar.
float iou = JaccardOverlap(roi[i], roi[j]);
if (iou > NMS_THRESHOLD)
suppressed_by_nms[j] = true;

}
}

//======== NMS+ROIPooling with EOP: ========
raise NMS(i) as h; // raise NMS when VQ is full.
// ROIPooling contains many vector instructions,
// which often crams the VQ and blocks the pipeline.
ROIPooling(roi_result[i], stage3_unit23, roi[i]);
sync h; // The end of exception is synchronized here.

//======== NMS+ROIPooling w/o EOP: =========
NMS(i); // scalar operations executed solely.
ROIPooling(roi_result[i], stage3_unit23, roi[i]);
// issuing many vector inst.s blocking the pipeline,
// thus vector operations executed almost solely.

}

DLPU

main

Thread

Program

Exception

Table

(PET)

(a) (c)

(b)

Fig. 6. Exception-oriented programming model: (a) the abstract machine
model for programmers, (b) an example code from the Faster R-CNN
algorithms, (c) the programmer’s view of the given example code. Note
that the user-provided exception handler (i.e. NMS) will not be executed
immediately. Instead, they will be registerred into the PET when loading
executable.

will not stall the vector execution. The vector data flow and
scalar control flow (i.e., exception thread) synchronize with
each other by using explicit barrier synchronize instructions
enforced by the programmers for ensuring correctness.

4 THE CPULESS MICROARCHITECTURE

For the interaction-free architecture, we follow the pro-
posed principles to design the CPULESS microarchitecture:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

(a)

PPU

DLPU
Mem

IO

S
P
U

Cache

G
R

s

IB

Fe
tc

h

D
e
co

d
e
r

Is
su

e
 Q

u
e
u
e

ROB IOEx
ce

p
ti

on
s

CPU DLPU

IB

Fe
tc

h

D
e
co

d
e
r

Is
su

e
 Q

u
e
u
e

(b)

PPU

SPM

IO

SPU Cache

GRs

IB
Ex

ce
pt

io
ns

Fe
tc

h

D
ec

od
er

Is
su

e
Q

u
eu

e

Vector
Queue

Fig. 7. (a) An intuitive microarchitecture of CPU and DLPU in CPU-
centric systems. (b) The microarchitecture of CPULESS (Black: compo-
nents also seen in traditional DLPU, Green: unique components, Dotted
Path: data sharing from SPU to PPU, Dashed Path: data sharing from
PPU to SPU, Grey Area: components can be affected by exceptions).

(1) it integrates the control and data flows into a fused
pipeline to perform the functionalities of CPU and tradi-
tional DLPU, together with shared data paths to reduce the
data exchanges. (2) it frees the vector computation on its
parallel processing unit from the disturbance of interrupts
and exceptions. (3) it uses programmer-managed scratchpad
memory instead of cache and large vector register file for
DLPU to provide a unified data space, avoiding the heavy
costs of system software in context switch.

4.1 Overall microarchitecture.
CPULESS employs a fused pipeline to process both scalar
control operations and vector computation operations si-
multaneously. Fig. 7 shows the microarchitecture of CPU-
LESS, which consists of an instruction execution engine,
functional units, on-chip buffer modules, IO module, and
exception module. The instruction execution engine (IEE)
contains an in-order multi-issue (e.g., 2-issue) pipeline, in-
cluding instruction fetch unit, instruction decoder, issue
queue (IQ) and vector queue (VQ). There are two different
functional units: one is the highly parallel processing unit
(PPU) for vector instructions2, and the other is the scalar
processing unit (SPU) mainly for the scalar branch, arith-
metic, and memory operations. The on-chip buffer modules
include the instruction buffer (IB), general-purpose registers
(GRs), cache for the SPU to process scalar data, and scratch-
pad memory (SPM) for the PPU to process vector data.

As shown in Fig. 7 (b), most components of CPULESS are
inherited from traditional DLPU design (in black) for vector
computation operations, new components (in green) are the
SPU, the GRs and cache, the VQ, and the exception module.
By adding these new components, CPULESS is enabled to
process not only the vector computation operations but also
the scalar control operations, thus can process a whole DL
task end-to-end without CPU.

4.2 Instruction set architecture
The instruction set architecture (ISA) is the key interface
between hardware and software. In order to support scalar

2. In this paper, we treat matrix instructions as a special case of vector
instructions

and vector operations in the same pipeline, the CPULESS
adopts a mixed ISA design which contains both scalar and
vector instructions. Similar to Cambricon [24], our ISA
contains four types of instructions, including control, data
transfer, computational, and logical instructions, see Table 2.
Especially the data transfer and computational instructions
are working on matrixes/vectors/scalars (note that matrix
can be treated as a variation of vector), so as to leverage the
data parallelism in hardware for high efficiency.

4.3 Key features
Comparing with traditional CPU-centric system with sepa-
rate CPU and DLPU as shown in Fig. 7 (a), the CPULESS in
Fig. 7 (b) has three significantly differences: a fused pipeline
for the SPU and the PPU, data sharing paths between the
SPU and the PPU, and a dedicated exception mechanism to
allow the SPU to work in parallel with the PPU.

Fused pipeline. CPULESS adopts a pipeline architec-
ture, including six stages, i.e., fetch, decode, issue, execute, write
back, and retire. After fetching an instruction from IB/EB,
CPULESS decodes the instruction based on its type, adds
it to the IQ for future in-order issuing and registers it for
future retiring. The IQ will issue the instruction to the SPU
or VQ, once the instruction is the oldest ready-to-issue one
in the IQ. For a scalar instruction, it will be executed in
the SPU, then its result will be written back to the GRs;
after writing back, it can retire from the IQ once it is the
oldest issued one in the IQ. It is worth noting that for a
vector instruction, once it is sent into the VQ, it can di-
rectly retire from the IQ without any effective computation,
i.e., a retire-before-execution fashion. Thus, the following
scalar instructions in the IQ can retire without waiting for
previous vector instructions which could last over ∼ 105

cycles. In such a way, CPULESS tightly fuses scalar control
and vector computation in the same pipeline to cover the
main functionalities of both CPUs and traditional DLPUs.
It provides the foundation for eliminating the CPU-DLPU
interaction in deep learning. As a comparison, Cambricon
[24] also introduced multiple processing units but without
letting the vector instructions retire in the IQ before their
real executions. Therefore, scalar instructions will be stalled
by vector instructions and vice versa, leading to inefficiency.

Sharing data paths. In CPULESS, we allow two paths to
move data between the SPU and the PPU without involving
the IO modules (as well as the external data buses between
the CPU and the DLPU) as in the CPU-centric systems of
Fig. 7(left). One is from the GRs to the PPU via the VQ for
the cases that the PPU needs data from the scalar operations,

TABLE 2
The proposed ISA in CPULESS.

Type - Example

Control Scalar jump, conditional branch

Data transfer
Matrix matrix load/store/move
Vector vector load/store/move
Scalar scalar load/store/move

Computational
Matrix marix multiply vector, marix multiply matrix
Vector vector multiply vector, element-wise computation
Scalar scalar computations

Logical Vector vector comparison
Scalar scalar comparison

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

c.f. the dotted path in Fig. 7. Thus, the VQ is able to access
the GRs to fetch operands for vector instructions. The other
is from the SPM to the SPU via the GRs for the cases that the
ALU needs data from the vector operations, c.f. the dashed
path in Fig. 7. Note that we do not allow the reverse path
in the CPULESS for the sake of data consistency. Also, each
time the SPM stores data to the main memory, the cache
will check such address scope and mark out-of-date cache
lines for later re-fetch.

Regarding dependency, write-after-write (WAW) and
write-after-read (WAR) dependencies are avoided by explic-
itly using the MOVE instruction to move data between GRs
and SPM along these two paths, thus only read-after-write
(RAW) dependency happens between the SPU and the PPU
in CPULESS. For the RAW dependency between a former
scalar instruction and the following vector instruction, the
VQ will record the index number of the IQ and wait for
the scalar instruction to retire, so as to guarantee the vector
instruction can read correct data. Otherwise, the VQ will
record a zero-value and issue the vector instruction to the
PPU in its turn (dotted path). In this way, CPULESS ensures
the PPU execution not stalled by scalar instructions unnec-
essarily, as scalar instructions are finished in a few cycles.

For the RAW dependency between a former vector in-
struction and the following scalar instruction, a BARRIER
instruction should be inserted by programmers before the
scalar instruction, to ensure the correctness of execution.
Since the vector instructions are retired-before-execution,
the next scalar instruction will write its results, if without the
BARRIER instruction. The BARRIER will be treated as a vector
instruction but it only blocks the VQ until its emptiness,
without real execution. Since VQ also works in an in-order
way, the retire of BARRIER indicates the finishing of all previ-
ous vector instruction. Also, a MOVE instruction is included
after the BARRIER to move data from SPM to GRs explicitly.
Therefore, BARRIER resolves the RAW dependency.

Here we clarify the data sharing process with concrete
examples.•From SPU to PPU The MOVE instruction from
GR to SPM is treated as a vector computation instruction.
The data travels from the GR to the VQ (when the MOVE
instruction is issued into VQ) to the PPU (when the MOVE
instruction is executed) and finally to the SPM (when the
result of MOVE is written back). It costs 3 cycles if there are
no stalls (i.e. when the VQ is empty). The moved data is
immediately available to further vector instructions so there
is no need for a BARRIER.• From PPU to SPU The MOVE
instruction from SPM to GR is treated as a scalar instruction.
Before the MOVE instruction, a BARRIER is required to en-
sure the RAW dependency is resolved. BARRIER is treated
as a vector instruction. It finishes in 2 cycles in minimal
(1 cycle issuing into VQ and 1 cycle executed by PPU if
the VQ is empty). The following MOVE instruction takes 1
additional cycle so the whole process costs 3 cycles in total.

Therefore, the CPULESS reduces the data exchange be-
tween the SPU and PPU to negligible latency (3 cycles
in minimal), while in traditional CPU-centric systems, the
CPU and DLPU need hundreds even thousands of cycles to
exchange data through IO modules and PCIe/AXI bus.

Dedicated exception. The CPULESS adopts a novel ex-
ception mechanism to execute scalar instructions and vector
instructions in parallel, which enables highly-efficient scalar

exception handler without blocking the execution of vec-
tor instructions. The CPULESS adopts accurate exception,
which means that when an exception happens, the PC
of the most recent retired instruction is recorded and all
unretired instructions in the IQ are abandoned. However,
all vector instructions in the VQ have already retired, thus
can be continuously executed in the PPU unaffected by
the exception. At the same time, the CPULESS can fetch
scalar instructions from the entrance of exception handler
and execute them in the SPU, in parallel with the execution
of vector instructions in the PPU. When recovering from
an exception, the CPULESS jumps to the next instruction
of the recorded PC to continue its execution. Particularly,
CPULESS has a special VQ full interrupt, which allows the
SPU to execute exception handlers in the program exception
table (PET), when the VQ is full of vector instructions or
encountering the barrier instruction. Such special exception
mechanism enables a new execution model: the scalar con-
trol operations of a deep learning task is executed in the
SPU as an exception handler, while the data flow of a deep
learning task is executed in the PPU in parallel.

4.4 Deploying the EOP model
For CPULESS, we employ the proposed EOP model where
scalar control operations in a DL program are processed as
exceptions to improve the parallelism between the PPU and
the SPU. Those scalar control exceptions are independent
of vector operations and thus can be executed on the SPU
in parallel with them. During execution, they will be trig-
gered by a VQ full interrupt, which means that the PPU
has enough retired instructions (with respect to the IQ) to
execute in following millions of cycles, thus the CPULESS
can use the IEE and the SPU to process instructions from
the scalar control flow without blocking the PPU (note that
the exception in the CPULESS will not squash the retired
vector instructions).

Fig. 6(b) shows an example from a real Faster R-CNN
program. In this piece of code, the outmost for-loop is
iterating over the 6k candidate RoI regions. For each RoI
region, two operations are performed: • NMS - the Jaccard
distance is computed between this region and any following
regions, any regions highly overlapping with this region
are suppressed. •RoI Pooling - the image in this region is
bilinearly scaled to 14× 14 and pooled. The NMS operation
is fully scalar, while the RoI Pooling operation is composed
with a large amount of vector instructions (i.e. avgpool),
which will completely fill the VQ and blocks any further
instructions to issue. As shown in Fig. 6(c), without the EOP
model the execution of NMS and RoI Pooling is merely
sequential, leading to a poor utilization of SPU and PPU.
With EOP the NMS operation can be written as an exception
handler which will not be executed immediately. Instead,
the execution runs into RoI Pooling first, letting a bunch
of avgpool instructions fills the VQ, then NMS is triggered
by the VQ full interrupt. The PPU is busy working on the
pooling operations and will not require IEE and SPU in a
while, and NMS is loaded on the SPU under the help of IEE
to keep the SPU utilized either.

The necessity of EOP model for DLPU-centric system is
inherent in three aspects. First, in a tradition microarchitec-
ture, the fullness of VQ must stall the entire pipeline, since

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

the next fetched instruction may still be a vector instruction,
which will cause the overflow error of VQ. Instead of simply
stalling the pipeline for the execution of vector instruction
in the VQ (which may be ∼ 105 cycles), the EOP model of
CPULESS can schedule the exception thread to be fetched by
IEE and executed in SPU, which can significantly improve
the efficiency of the IEE and the SPU.

Second, EOP model can avoid the scalar instructions to
grab the IEE sources required by the vector instructions,
as the scalar operations are executed when the VQ full
interrupt handler is triggered, where the execution of the
vector instructions in VQ does not need IEE resource. As
a comparison, traditional programming model which treats
the scalar operations as a function can only call the scalar
function at the fixed time determined at programming with-
out dynamic information about the IEE resource require-
ment of the vector instructions.

Third, the EOP model enables coarse-grain instruction-
level parallelism between the scalar operations and the
vector operations, which gives the DLPU-centric system a
large space to optimize the scheduling.

5 THE DLPU-CENTRIC SYSTEM

In this section we introduce the DLPU-centric system in-
cluding the compiler toolchain and the runtime system.

5.1 Overall system architecture
As shown in Fig. 7(middle), the entire DLPU-centric system
can be mainly divided into two parts, the central DLPU—
CPULESS, and the IO subsystem. The IO subsystem con-
nects all devices together through the bus. On each IO de-
vice, there exists a hardware manager for running a monitor
on it that manages the related hardware component, as
introduced in the splitkernel architecture [25]. The CPULESS
integrates the control and data flows into a fused pipeline
for eliminating the interaction wall. In Table 3, we show the
comparison results of the software and hardware feature of
the CPU-centric system and the DLPU-centric system.

Generally, the DLPU-centric system uses interaction-
free architecture and lightweight runtime to deliver
high efficiency for deep learning processing. Regarding
the interaction-free architecture, the DLPU-centric system
adopts the proposed CPULESS microarchitecture. Regard-
ing the light-weight runtime, the DLPU-centric system em-
ploys a light-weight runtime as an alternative to the heavy-
weight OS for system management, memory management,
and processor management. To further reduce the com-
plexity of runtime, DLPU-centric system takes advantages
of distributed local hardware controllers to offload device-
related functionalities to corresponding device modules,
e.g., hard disk and network.

5.2 Compiling and linking
Fig. 8(a) illustrates the entire compilation process from the
user program to the final machine executable. At first, the
compiler, which consists of the vector and exception com-
piler, compiles the user program (*.eop) to the vector object
(vec.o) and exception object (exp.o), respectively. Regarding
the codes in the exception handlers, they are directly com-
piled to RISC-style scalar instructions. After compilation,

the linker links the vector object and the exception object
together for building the executable. The executable of
EOP model is called Exception Executable and Linking Format
(E2LF), and the detailed format is shown in Fig. 8(b), which
can be roughly divided into a header, header table, vector
segment, and exception segment. The E2LF executable can
be parsed and loaded into the memory for execution, which
relies on the underlying runtime system.

The programmers can define vector-typed variables ei-
ther internal or external, which is statically allocated by the
compiler on the scratchpad memory or the DDR memory
respectively. Thus, programmers should be aware of the ca-
pacity of the scratchpad memory and lifecycles of the inter-
nal vector-typed variables, otherwise allocation failure will
result in a compilation error. Assignments between internal
and external variables result in load/store instructions. The
vector operations can directly use the builtin intrinsic such
as vadd and matmul for parallel computation, and expres-
sions such as c = a + b (where a, b, c are vector-typed
variables) are also supported for simple vector operations.
The compiler can transform them into the corresponding
vector instructions in the vector object.

Note that to support vector expressions, the value type
of the expression a + b (where a or b are vector-typed) will
be marked as rv-value, and rv-value must be assigned to
an l-value internal vector variable to eliminate the rv-value
property (e.g. c = a + b where c is a previously defined
internal vector). The (intermediate) result of the expression
is temporarily stored on the address of the assigned l-value
(in this example, the address of c). Letting rv-value partic-
ipate further computations will result in compilation error.
The rv-value mechanism forbids the expression statements
such as e = (a * b) + (c * d); or a + b;. The evaluation of
such expressions must temporarily allocate for intermediate
results, which messes up the memory management for the
programmer. The above statements can be rearranged as e
= (a = a * b) + (c = c * d); and c = a + b; respectively, to
specify the destination of intermediate results explicitly and
convert rv-values into l-values.

Built-in library calls are also provided for common op-
erations, such as the computation of convolution or pooling
layers. Calling built-in library will immediately invalidates
all internal vector-typed variables to transfer the ownership
of the whole scratchpad memory to the library. The code
inside built-in library calls are generated by the compiler.

TABLE 3
Software and hardware features changed from a CPU-centic system to

a DLPU-centric system.

- CPU-centric DLPU-centric

O
S

fu
nc

ti
on

al
it

y System management OS Runtime
Memory management OS Runtime
Processor management OS Runtime

I/O management CPU+OS Hardware controller/local service
Device management OS Hardware controller/local service
Internal transfer Bus Network transfer protocol

H
ar

dw
ar

e
ft

. Computing modules Two (CPU+DLPU) One (DLPU)
ISA Two sets One set (scalar+vector+matrix)
System calls CPU support DLPU support
Interrupts CPU support DLPU support

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Vector
Compiling

Exception
Compiling

vec.o

exp.o

Linking
E2LF

E2LF header

Program header table

Section 1

……

Section n

Section 1

Section 2

……

Vector
segment

Exception
segment

User
program
（*.eop）

(a) Compilation process (b) Detailed format of E2LF

Fig. 8. The compilation process and the detailed format of the proposed
E2LF executable.

5.3 Runtime system

The runtime system is crucial to the performance and pro-
grammability of the DLPU-centric system, and it mainly
consists of three parts, i.e., DLPU management, memory
management, and IO management.

DLPU management. The runtime system provides
DLPU management during the entire execution of the bi-
nary, i.e., the loading, execution, and termination phase.
During the loading phase, the E2LF binary is loaded and
parsed through different sections. Note that the parsing of
the exception segment is nontrivial as the program excep-
tion table (PET), where each entry stores the address to
the corresponding exception handler binaries, should be
configured. The entire process can be elaborated as follows.
At first, both the number of sections and the total size of
the exception segment can be retrieved from the header
table for allocating the memory space for the PET and
the entire exception binaries, respectively. After that, the
offset of each section can be parsed from the E2LF file for
attaining the starting address of the related section. Finally,
the starting addresses of all sections will be filled into the
PET. Once the entire PET is ready, additional PET register
will be configured with the address of PET, and the program
counter will also be configured for execution. During the
execution phase, the barrier intrinsic is exposed for the
programmers to control the synchronization of the PPU and
SPU. During the termination phase, the allocated resources
such as memory should be reclaimed.

Memory management. Programmers are aware of both
the main memory and the scratchpad memory of the PPUs,
and the runtime system provides library functions for al-
location/free of these memory spaces (i.e., malloc, free,
spm malloc, and spm free). The memory copy functions
are also provided for moving data within the main memory
or between the main memory and scratchpad memory (all
of them are using the memcpy function with different pa-
rameters). Moreover, the virtual/physical address mapping
is also maintained.

IO management. As the proposed DLPU-centric system
leverages the CPULESS DLPU with disaggregated hardware
components, i.e., each peripheral device such as the network
and disk has its own controller, the idea of disaggregated
OS [25] can well fit in. In disaggregated OS, all the pe-
ripheral devices can employ a so-called monitor for serving
various requests. Thus, in contrast to relatively heavy centric
OS, the runtime system of disaggregated OS on the DLPU
can be significantly simplified.

TABLE 4
Specifications of baseline and DLPU-centric systems.

- Device Name Perf./Size@Freq. Bandwidth Die (mm2) Power

C
PU

-c
en

tr
ic˙ CPU Xeon 6130 2.10GHz - 698 (14nm) 125W

GPU Tesla V100 125Tops@1312MHz 900GB/s 815 (12nm) 300W
Bus NVLink - 300GB/s - -
Memory DDR4 512GB@4×2666MHz 85.32GB/s - 20.12W
Network Ethernet - 1Gb/s - 4.4
Disk Hard Disk 2TB@7200rpm 207.92MB/s - 5.15W

D
LP

U
-c

en
tr

ic DLPU CPULESS 2.08Tops@1GHz 64GB/s 16.94 (45nm) 2.27W
Memory DDR4 128GB@2×2133MHz 34.12GB/s - 4.4W
Network InfiniBand - 56Gb/s - 7.18W
Disk Hard Disk 2TB@7200rpm 209.19MB/s - 5.15W

Benchmark Programs

CPU-centric

Discrete-GPU

EOP-C Programs

.EOP

nvprof

.prof

Raw Profile

CPU-centric

Integrated-GPU

Baseline System LP Model

Translation

010

Binary

EOP-C Compiler

Cycle-level Simulator

DLPU-centric &

SPU-centric

CPULESS

HDL Design

Synthesis,
Place & Route,

.gds

Power, Area, etc.

Hardware

Characteristics

Memory Model

Fig. 9. The overall workflow of our evaluation process.

6 METHODOLOGY

In this section, we present the systems evaluated in this
paper and how these systems are evaluated. The overall
workflow of our evaluation is shown as Fig. 9.

CPU-centric systems. We select a commodity CPU+GPU
system as one of our CPU-centric system baseline. The sys-
tem adopts a Intel Xeon 6130 CPU as the control center, and
adopts a discrete NVIDIA Tesla V100 GPU, which has 60×
peak performance (125Tops/s) with respect to our DLPU-
centric system, see Table 4. We deploy Tensorflow 1.6, with
SIMD and CUDA 9.2 / cuDNN 7.2.1 support for CPU and
GPU, respectively. We measure the GPU performance and

TABLE 5
Benchmarks.

Benchmark Mode Dataset Batch Size

Natual Language Processing:
Transformer [26] Inference WMT14 2

Reinforcement Learning:
DQN [27] Training MsPacman 20

Graph Neural Network:
GCN [14] Training Cora 2708

Image Classification:
SENet [28] Inference CIFAR-10 1
ShuffleNet-V2 [29] Inference ImageNet 1

Object Detection:
SSD (MobileNet-V1) [30] Inference VOC2007 1
Faster R-CNN (ResNet-101) [13] Inference VOC2007 1

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

energy cost using the official NVprof provided by NVIDIA
with persist mode in order to avoid the impact of cold-start
effect (power-up, about 10s). In each experiment, we only
run a single DL task on the system to measure CPU and
GPU without co-run affections. We use the Power Gadget to
measure the CPU, DRAM energy costs and use the pTop to
measure the hard disk energy when executing benchmarks.
We estimate the NIC energy costs based on its reported
maximum power.

Besides the aforementioned real CPU-centric system
with discrete GPU, we also develop an analytical model of
a CPU-centric system with integrated GPU, which assumes
that the CPU (Xeon 6130) and the GPU (V100) are integrated
on the same chip and have zero memcpy cost. Technically,
we obtained profile data from nvprof on the discrete GPU,
which includes the starting and ending timestamp for each
activity. We set the time of all memcpy activities to zero, and
rearrange the timeline by solving the following linear pro-
gramming problem: subject to the original partial order of
CPU/GPU/Runtime/(zeroed)memcpy activities, minimize
the total execution time. The reported data of the integrated
GPU are based on the result given by the LP solver.

DLPU-centric system. The CPULESS DLPU in this paper
is implemented in Verilog RTL. It has a peak performance
of 2.08Tops/s with total 1.72MB on-chip memory and 128GB
DDR4 main memory, see Table 4. It has a 34.12GB/s main
memory bandwidth, which is 40% of the baseline system
(85.32GB/s), and a 64GB/s inner bandwidth (between PPU
and SPM), which is 7.11% of the baseline system. To better
measure the CPULESS, we synthesis and place&route its
RTL code with Synopsys toolchains under TSMC 45 nm
technology to report the area cost and energy consumption.
Besides the CPULESS DLPU, we build a cycle-level system
simulator to obtain the traces of accesses to the hard disk
and DDR4 memory. With these traces, we measure the con-
crete energy costs of hard disk and memory in a real system
with the same configurations of the DLPU-centric system.
The costs of Infiniband NIC is estimated with typical power.
We implemented the EOP-C programming language and the
EOP-C compiler toolchain as described in Section 5.2.

SPU-centric system. Moreover, we build a CPU-centric
version of the proposed DLPU-centric system, where the
SPU serves as the host with integrated PPU from CPU-
LESS, i.e., CPU-centric system with integrated DLPU. To
well illustrate the effectiveness of the proposed EOP model,
such a system has the very same configurations (including
OS functionalities and hardware features) as the measured
DLPU-centric system, except the EOP model. For example,
we use the simple SPU from CPULESS serving as the CPU
in this system. Therefore, when processing the DL tasks,
the only extra cost of this CPU-centric system is from the
CPU-DLPU control signaling interactions, compared to the
proposed DLPU-centric system.

Benchmarks. As listed in Table 5, we use seven represen-
tative DL algorithms from various domains as our bench-
marks for evaluation. For CPU-centric systems, the bench-
mark programs are downloaded from public resources. We
leave all settings in the benchmark programs as is. For the
DLPU-centric system, the programs are faithfully translated
into the EOP-C programming language and compiled with
the EOP-C compiler toolchain.

Transf. DQN GCN Shuf.Net SENet SSD F.R-CNNGeoMean

100

101

102

Sp
ee

du
p

discrete GPU integrated GPU integrated DLPU DLPU-centric

Fig. 10. Speedups of the DLPU-centric system when compared to the
CPU-centric baseline systems.

7 EXPERIMENTAL RESULTS

7.1 Characteristics of DLPU-centric system
In Table 6, we present the hardware parameters and layout
characteristics of CPULESS, respectively. CPULESS has 32
VPEs where each VPE contains 32 PEs (NV PE = NPE =
32), a 32KB IB, a 32KB EB, a 8KB Cache, and a 1MB SPM. It
is able to achieve 2.08T bf16 operations per second while
running at 1GHz. Overall, CPULESS has an area cost of
16.94mm2, only 2.43% of the Intel Xeon Gold 6130 CPU
(698mm2 die area) and 2.08% of the V100 GPU (815mm2

die area), respectively. The total power consumption of the
DLPU-centric system is 19W, 4.18% of the CPU-centric sys-
tem. Obviously, the DLPU-centric system is cost-effective,
not only because the CPULESS is an efficient accelerator,
but also because it saves the cost for the centric CPU.

7.2 Performance
Fig. 10 shows the performance of the proposed DLPU-
centric system and three baseline system (CPU+discrete
GPU, CPU+integrated GPU, and SPU+integrated DLPU),
normalized to CPU+discrete GPU system. Overall, the
DLPU-centric system achieves an average speedup of
10.30× when compared to CPU+discrete GPU, 10.22× to
CPU+integrated GPU, and 1.16× to CPU+integrated DLPU,
respectively.

Regarding the two CPU+GPU systems, the DLPU-
centric system outperforms the most (95.2×/94.7×) on
SENet due to the complex computation graph and limited
parallelism among small computing blocks. The DLPU-
centric system slightly outperforms the CPU-centric systems
on Faster R-CNN and SSD with a speedup of 1.08×/1.08×
and 1.79×/1.77× respectively. The reason is that the most
time-consuming operations Faster R-CNN and SSD are reg-
ular vector operations, which can be well performed by
GPUs. Moreover, as CPULESS takes over the control, the
DLPU-centric system is able to avoid the cost on OS, driver,

TABLE 6
Hardware characteristics of CPULESS.

- Area (mm2) (%) Power (mW) (%)

Whole Chip 16.94 100 2265.93 100

PPU 4.22 24.90 967.76 42.71
IEE 0.35 2.06 103.08 4.44

IB 0.36 2.12 25.28 1.12
Cache 0.05 0.27 3.16 0.14
Mem 2.98 17.59 312.67 13.80
DDR4 Controller&Phy 4.11 24.25 374.90 21.48
Other 4.88 28.80 104.18 5.97

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Transf. DQN GCN Shuf.NetSENet SSD F.R-CNN
0%

20%

40%

60%

80%

100%
Ex

ec
ut

io
n

Ti
m

e
Br

ea
kd

ow
n Framework

Runtime
Driver
OS
Memcpy
Compute
Control
I/O
Scalar
Vector

Fig. 11. Execution time breakdown. Left: DLPU-centric, Mid: CPU +
discrete GPU, Right: CPU + integrated GPU

runtime and framework which are running on CPU in the
CPU-centric systems, resulting in a 56.55% PPU utilization
on average (vs. 2.87% and 2.89% in CPU+discrete GPU
and CPU+integrated GPU, respectively), see Fig. 11 for the
detailed execution breakdown. Particularly, for ShuffleNet-
V2, almost all (99.5%) control operations on the DLPU-
centric system can be hidden under the vector computation
operation on its PPU with the EOP programming model,
resulting in a PPU utilization rate as high as 94.11%, which
is significantly higher than the GPU utilization rate of the
CPU-centric systems (1.26%/1.27%).

Regarding the SPU+integrated PPU system, the DLPU-
centric system could save the control signaling interac-
tions between CPU and the integrated PPU, leading to
an extra 15.60% improvement on average. Among all the
benchmarks, the DLPU-centric system achieves the highest
improvement (54.15%) on GCN from its 8.46 million in-
teractions, the lowest improvement (0.13%) on DQN from
its 701k interactions. Such results well demonstrate the
essentiality and effectiveness of the EOP model in DLPU-
centric systems.

7.3 Energy
Fig. 12 compares the total energy costs of the DLPU-
centric system and the baseline CPU-centric systems. The
DLPU-centric system can achieve an energy reduction of
92.99%/91.60% compared to baseline CPU-centric systems.

The energy benefit of the DLPU-centric system is mainly
obtained from the following aspects. The DLPU-centric sys-
tem eliminates the data exchange between CPU and DLPU
in original CPU-centric systems, thus the energy is reduced
by 17.40% on average. By reducing the control signaling
energy cost, the DLPU-centric system is able to save 39.97%
energy.

We also give out the system energy breakdowns in
Fig. 13. It is interesting that the CPULESS DLPU, which
occupies only 1.15% energy of the whole DLPU-centric
system, takes over all the DL operations. As a comparison,
to solve these operations, CPU and GPU need to consume
77.52%/92.85% energy of the CPU-centric systems. It well
demonstrates that using CPULESS to replace traditional
CPU/GPU is quite energy-efficient.

7.4 Discussion
CPU-centric CPU+accelerator system. We also evaluated
a CPU-centric system with a DianNao [7] deep learning
accelerator instead of a GPU. The DianNao under test has a

Transf. DQN GCN Shuf.Net SENet SSD F.R-CNNGeoMean
0%

25%

50%

75%

100%

125%

En
er

gy
 C

om
pa

ris
on

CPU + discrete GPU CPU + integrated GPU DLPU-centric

Fig. 12. Relative energy consumption comparison of the whole systems.

peak performance of 0.52 TOP/s (1/4 of the DLPU-centric
system) and a main memory bandwidth of 102.4 GB/s
(3× higher than the DLPU-centric system). Specifically,
the DLPU-centric system shows 5.23×/8.40× better per-
formance over the CPU+accelerator system respectively on
SSD and Faster R-CNN, because the DLPU-centric system
eliminated the CPU-accelerator interactions.

SIMD-CPU-centric system. The intuitive idea of merg-
ing a SIMD functional unit into the CPU has the similar
effect as the measured CPU-centric system with integrated
PPU. However, the SIMD-CPU is not able to avoid the extra
costs from OS, heavy CPU, context switching, and control
signaling interactions. Especially, as a DLPU instruction
may need to iteratively execute in the parallel processing
unit for ∼105 cycles, a squashed DLPU instruction must
restart from the beginning after returning from the interrupt
handler, resulting in a great loss of DLPU efficiency. As
a piece of evidence, during the computation of Faster R-
CNN on a CPU, it encounters averagely 260.36 interrupts
per second. We develop a simulator for SIMD-CPU-centric
system, whose SIMD-CPU has the same parallel processing
unit, memory bandwidth and SPM size with CPULESS,
and find that the frequent interrupts makes the SIMD-CPU-
centric system 1.93× slower than the DLPU-centric system
proposed in this paper.

CUDA by hand. Even implemented in a pure-GPU
manner, i.e. avoid execution switch between CPU and GPU,
the interaction wall still exists. In such approaches, the scalar
control is performed by GPU with its scalar instructions (or
masked SIMD instructions), which share the decode/issue
unit with vector compute instructions. As a result, the scalar
control flow and the vector data flow run alternately and
sequentially on the GPU: the scalar control blocks the vec-
tor/matrix units (including CUDA cores and TensorCore).
We implemented the GCN in CUDA by hand. The code only
launches one single GPU call from the host, with the CUDA
Dynamic Parallelism feature and the WMMA TensorCore
API. The speedup DLPU-centric vs CPU-centric drops from
14.60× to 2.51×, but there is still a significant performance
gap.

8 RELATED WORK

DLPUs. Due to the success of deep learning, DLPU has be-
come a hot topic in the computer architecture society. Many
DLPUs have been proposed recently. GPUs are widely used
in both academy studies and industrial products with the
help of mature programming frameworks (e.g. Caffe, Py-
Torch, TensorFlow, MxNet) and libraries (CUDA, cuDNN).
NVIDIA has released several different GPUs dedicated for

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Transf. DQN GCN Shuf.Net SENet SSD F.R-CNN
0%

25%

50%

75%

100%
En

er
gy

 B
re

ak
do

wn Disk
NIC
Memory
CPU
GPU/DLPU

Fig. 13. Energy breakdown. Left: DLPU-centric, Mid: CPU + discrete
GPU, Right: CPU + integrated GPU

deep learning, including the most recent Tesla V100. FPGAs
are also used for implementing deep learning networks [4],
[5], [6].

To avoid the inefficiency and improve performance,
many customized accelerators are proposed as alternates
to CPUs/GPUs/FPGAs. DianNao family [31], a series of
vector-based high-performance accelerators, leverages the
data reuse to minimize the data accesses in NNs for high
efficiency. Cambricon [24] proposed a customized instruc-
tion set with scalar/vector/matrix operations to support
different algorithm flexibly. Systolic architecture naturally
fits for convolution operation while achieving internal data
reuse with low input bandwidth requirement and thus been
well exploit by researchers (ShiDianNao [9], Eyeriss [11],
and TPU [10]).

Researchers also exploit hardware-oriented algorithms
optimization and software/hardware co-design. To further
improve the performance and energy efficiency, sparsity
[32], [33], [34], [35], dynamic precision [36], [37], redundancy
of inputs and weights [38], [39], sparsity irregularity [40]
and structural compression [41] are successively addressed.
However, the above accelerators still focus on improving the
performance or energy-efficiency of DLPU as a coprocessor,
without consideration of the interaction wall between CPU
and DLPU. To the best of our knowledge, CPULESS is the
first DLPU targeting to break the interaction wall.

Control-enabled accelerators. The earliest accelerator
system with scalar control ability can be traced back to
vector machines. Decoupled Vector Architecture [42] (e.g.
Cray BlackWidow [43]) decouples scalar units and vector
units to enable run-ahead execution, but the interference
between scalar and vector flow is not studied. Many pro-
cessors adopt a vector unit as a coprocessing core, including
Tarantula [15], IBM Cell [16], Hwacha [44], but they do not
implement a fused instruction pipeline, thus interactions
between cores still exists. Recently accelerators coupled with
a scalar control unit are proposed to enable end-to-end
execution of the full workload without the support of CPU,
e.g. Cambricon [24], Softbrain [45], but these accelerators
did not focus on the interaction wall. More specifically, they
do not have the exception-on-busy mechanism so the vector
flow may blocks the execution of the scalar flow.

DL processing system. In existing DL processing sys-
tems, DLPUs are usually hosted by a central CPU as co-
processors. Amazon’s DeepLens, a deep learning embedded
video camera, has a central Intel Atom CPU. Google’s TPU
cloud is hosted by two Intel Skylake CPUs for every four
TPU chips. NVIDIA’s DGX-1/DGX-2 use two Intel Xeon E5
CPUs to host 8/16 V100 GPUs. Summit, a DL supercom-
puter, still has 9216 Power9 CPUs to host 27648 NVIDIA

V100 GPUs. Microsoft’s Brainwave uses Intel Xeon CPU
to host deployed FPGAs in cloud [12]. Huawei integrated
Neural Processing Unit in its Kirin 970/980 soc chips in
its phones. All these real products, from sever-end to IoT
devices, integrate centric host CPUs. Thus, they have to
suffer from inefficient interactions between CPU and DLPU.
As a comparison, we propose the first DLPU-centric DL
computing system, which can be freed from the interaction
wall.

9 CONCLUSION

In this paper, we focus on the major inefficiency source,
i.e., interaction wall in CPU-centric DL processing systems,
which includes data exchange and control signaling. To break
the interaction wall, we proposed a DLPU-centric system
which features an exception-oriented programming (EOP)
model and the architectural support of CPULESS DLPU.
Overall, the proposed DLPU-centric system achieves at most
10.30× better performance and 92.99% energy saving, re-
spectively, than a CPU-centric deep learning computing sys-
tem. Compared with a CPU-centric version of DLPU system
where the SPU serves as the host with integrated PPU, the
proposed DLPU- centric system still achieves 15.60% better
performance from avoided interactions.

ACKNOWLEDGMENTS

The authors thank Zhenxing Zhang, Yifan Hao and Zhe
Fan from Institute of Computing Technology, Chinese
Academy of Sciences and Guichun Wang from University
of Science and Technology of China for their contribu-
tion to the experiments. This work is partially supported
by the National Key Research and Development Program
of China (under Grant 2017YFB1003101, 2018AAA0103300,
2017YFA0700900, 2017YFA0700902, 2017YFA0700901), the
NSF of China (under Grants 61732007, 61672491,
61732002, 61702478, 61732020), Beijing Natural Sci-
ence Foundation (JQ18013), Beijing “New Generation
Artificial Intelligence Technology Cultivation Projects”
(Z181100008918020), National Science and Technology Ma-
jor Project (2018ZX01031102), the Transformation and Trans-
fer of Scientific and Technological Achievements of Chi-
nese Academy of Sciences (KFJ-HGZX-013), Key Research
Projects in Frontier Science of Chinese Academy of Sci-
ences (QYZDB-SSW-JSC001), Strategic Priority Research
Program of Chinese Academy of Science (XDB32050200,
XDC01020000, XDC08040102), Standardization Research
Project of Chinese Academy of Sciences (BZ201800001),
Beijing Academy of Artificial Intelligence (BAAI) and
Beijing Nova Program of Science and Technology
(Z191100001119093), Guangdong Science and Technology
Program (2019B090909005) and Xplore Prize.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[2] S. Hochreiter and J. Schmidhuber, “Long Short-term Memory,”
Neural Computation, vol. 9, no. 8, pp. 1–32, 1997.

[3] T. Mahlmann, A. Drachen, J. Togelius, A. Canossa, and G. N.
Yannakakis, “Predicting player behavior in Tomb Raider: Under-
world,” in Proceedings of the 2010 IEEE Conference on Computational
Intelligence and Games, Aug 2010, pp. 178–185.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[4] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo,
S. Yao, Y. Wang, H. Yang, and W. J. Dally, “ESE: Efficient Speech
Recognition Engine with Compressed LSTM on FPGA,” in Pro-
ceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA), 2016, pp. 3–8.

[5] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based Accelerator Design for Deep Convolutional Neural
Networks,” Proceedings of the 2015 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays - FPGA ’15, pp. 161–170,
2015.

[6] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song, Y. Wang, and H. Yang, “Going Deeper with
Embedded FPGA Platform for Convolutional Neural Network,”
in Field-Programmable Logic and Applications, 2016, pp. 26–35.

[7] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“DianNao: a small-footprint high-throughput accelerator for ubiq-
uitous machine-learning,” in Proceedings of the 19th international
conference on Architectural support for programming languages and
operating systems (ASPLOS), Salt Lake City, UT, USA, 2014, pp.
269–284.

[8] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam, “DaDianNao: A Machine-Learning
Supercomputer,” in Proceedings of the 47th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO-47), 2015, pp.
609–622.

[9] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, X. Feng, Y. Chen, and
O. Temam, “ShiDianNao: Shifting Vision Processing Closer to the
Sensor,” in Proceedings of the 42nd Annual International Symposium
on Computer Architecture, 2015, pp. 92–104.

[10] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Ba-
jwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-L.
Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean,
B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hag-
mann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz,
A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, A. Koch, N. Kumar,
S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. Mackean, A. Maggiore, M. Mahony, K. Miller, R. Na-
garajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadi-
ani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg,
A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Va-
sudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-
Datacenter Performance Analysis of a Tensor Processing Unit,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture (ISCA’17), 2017, pp. 1–17.

[11] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for
Energy-Efficient Dataflow for Convolutional Neural Networks,”
in 2016 ACM/IEEE 43rd Annual International Symposium on Com-
puter Architecture (ISCA), 2016, pp. 367–379.

[12] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman, M. Abey-
deera, L. Adams, H. Angepat, C. Boehn, D. Chiou, O. Firestein,
A. Forin, K. S. Gatlin, M. Ghandi, S. Heil, K. Holohan, A. El
Husseini, T. Juhasz, K. Kagi, R. Kovvuri, S. Lanka, F. Van Megen,
D. Mukhortov, P. Patel, B. Perez, A. Rapsang, S. Reinhardt,
B. Rouhani, A. Sapek, R. Seera, S. Shekar, B. Sridharan, G. Weisz,
L. Woods, P. Yi Xiao, D. Zhang, R. Zhao, and D. Burger, “Serving
DNNs in Real Time at Datacenter Scale with Project Brainwave,”
IEEE Micro, vol. 38, no. 2, pp. 8–20, 2018.

[13] S. Ren, K. He, and R. Girshick, “Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks,” in Advances in
neural information processing systems, 2015, pp. 1–9.

[14] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” arXiv preprint arXiv:1609.02907,
2016.

[15] R. Espasa, F. Ardanaz, J. Emer, S. Felix, J. Gago, R. Gramunt,
I. Hernandez, T. Juan, G. Lowney, M. Mattina, and A. Seznec,
“Tarantula: A vector extension to the Alpha architecture,” Con-
ference Proceedings - Annual International Symposium on Computer
Architecture, ISCA, pp. 281–292, 2002.

[16] D. C. Pham, T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry,
D. Cox, P. Harvey, P. M. Harvey, H. P. Hofstee, C. Johns,
J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi, M. Pham, J. Pille,
S. Posluszny, M. Riley, D. L. Stasiak, M. Suzuoki, O. Takahashi,
J. Warnock, S. Weitzel, D. Wendel, and K. Yazawa, “Overview of
the architecture, circuit design, and physical implementation of a

first-generation cell processor,” IEEE Journal of Solid-State Circuits,
vol. 41, no. 1, pp. 179–196, 2006.

[17] E. Fayneh, M. Yuffe, E. Knoll, M. Zelikson, M. Abozaed, Y. Talker,
Z. Shmuely, and S. A. Rahme, “4.1 14nm 6th-generation core
processor soc with low power consumption and improved per-
formance,” in 2016 IEEE International Solid-State Circuits Conference
(ISSCC), Jan 2016, pp. 72–73.

[18] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu,
D. Lo, S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil,
P. Patel, A. Sapek, G. Weisz, L. Woods, S. Lanka, S. Reinhardt,
A. Caulfield, E. Chung, and D. Burger, “A Configurable Cloud-
Scale DNN Processor for Real-Time AI,” in Proceedings of the 45th
Annual International Symposium on Computer Architecture, 2018.

[19] A. Krizhevsky, G. E. Hinton, I. Sutskever, and G. E. Hinton, “Ima-
geNet Classification with Deep Convolutional Neural Networks,”
Advances In Neural Information Processing Systems, pp. 1–9, 2012.

[20] K. Simonyan and A. Zisserman, “Very Deep Convolutional Net-
works for Large-Scale Image Recoginition,” in arXiv preprint, 2015,
pp. 1–14.

[21] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
2017 IEEE International Conference on Computer Vision (ICCV), Oct
2017, pp. 2980–2988.

[22] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN train-
ing for high fidelity natural image synthesis,” 2018.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” 2018.

[24] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and
T. Chen, “Cambricon: An Instruction Set Architecture for Neural
Networks,” in 2016 ACM/IEEE 43rd Annual International Sympo-
sium on Computer Architecture (ISCA), 2016, pp. 393–405.

[25] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “LegoOS: A Dissem-
inated, Distributed OS for Hardware Resource Disaggregation,”
2018.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in neural information processing systems, 2017, pp. 5998–
6008.

[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostro-
vski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level
control through deep reinforcement learning,” Nature, vol. 518, no.
7540, pp. 529–533, 2015.

[28] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7132–7141.

[29] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of
the European Conference on Computer Vision (ECCV), 2018, pp. 116–
131.

[30] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu,
and A. C. Berg, “Ssd: Single shot multibox detector,” in European
conference on computer vision. Springer, 2016, pp. 21–37.

[31] Y. Chen, T. Chen, Z. Xu, N. Sun, and O. Temam, “DianNao fam-
ily: Energy-efficient hardware accelerators for machine learning,”
Commun. ACM, vol. 59, no. 11, pp. 105–112, Oct. 2016.

[32] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: Efficient Inference Engine on Compressed Deep
Neural Network,” in 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA), vol. 16, 2016, pp. 243–
254.

[33] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen,
and Y. Chen, “Cambricon-X : An Accelerator for Sparse Neural
Networks,” in 2016 49th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), 2016.

[34] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-Neuron-Free Deep Neural
Network Computing,” in 2016 ACM/IEEE 43rd Annual Interna-
tional Symposium on Computer Architecture (ISCA), 2016, pp. 1–13.

[35] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN
: An Accelerator for Compressed-sparse Convolutional Neural
Networks,” in The 44th International Symposium on Computer Ar-
chitecture (ISCA), 2017.

[36] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, J. K. Kim, V. Chandra,
and H. Esmaeilzadeh, “Bit Fusion: Bit-Level Dynamically Com-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

posable Architecture for Accelerating Deep Neural Networks,” in
Proceedings of the 45th Annual International Symposium on Computer
Architecture, 2017.

[37] P. Judd, J. Albericio, and A. Moshovos, “Stripes: Bit-Serial Deep
Neural Network Computing,” in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), vol. 6056,
no. c, 2016, pp. 1–1.

[38] M. Mahmoud, K. Siu, and A. Moshovos, “Diffy: a Dejavu-Free
Differential Deep Neural Network Accelerator,” in Proceedings of
the 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2018.

[39] K. Hegde, J. Yu, R. Agrawal, M. Yan, M. Pellauer, and C. W.
Fletcher, “UCNN: Exploiting Computational Reuse in Deep Neu-
ral Networks via Weight Repetition,” in Proceedings of the 45th
Annual International Symposium on Computer Architecture, 2018.

[40] X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou, L. Li,
T. Chen, and Y. Chen, “Cambricon-S : Addressing Irregularity
in Sparse Neural Networks through A Cooperative Software /
Hardware Approach,” in Proceedings of the 51st Annual IEEE/ACM
International Symposium on Microarchitecture, 2018.

[41] C. Ding, S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, C. Wang,
X. Qian, Y. Bai, G. Yuan, X. Ma, Y. Zhang, J. Tang, Q. Qiu,
X. Lin, and B. Yuan, “CirCNN: Accelerating and Compressing
Deep Neural Networks Using Block-CirculantWeight Matrices,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, 2017.

[42] R. Espasa and M. Valero, “A simulation study of decoupled vector
architectures,” J. Supercomput., vol. 14, no. 2, pp. 124–152, 1999.

[43] D. Abts, A. Bataineh, S. Scott, G. Faanes, J. Schwarzmeier, E. Lund-
berg, T. Johnson, M. Bye, and G. Schwoerer, “The cray black-
widow: a highly scalable vector multiprocessor,” in SC ’07: Pro-
ceedings of the 2007 ACM/IEEE Conference on Supercomputing, 2007,
pp. 1–12.

[44] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanović,
and K. Asanović, “A 45nm 1.3ghz 16.7 double-precision gflops/w
risc-v processor with vector accelerators,” in ESSCIRC 2014 - 40th
European Solid State Circuits Conference (ESSCIRC), 2014, pp. 199–
202.

[45] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam,
“Stream-dataflow acceleration,” ser. ISCA ’17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 416–429.

Zidong Du (Member, IEEE) recieved the bach-
elor’s degree in engineering from the Depart-
ment of Electronic Engineering, Tsinghua Uni-
versity, Beijing, China, in 2011, and the PhD
degree from the Institute of Computing Tech-
nology, Chinese Academy of Sciences, Beijing,
China, in 2016, with the guidance from prof. Yunji
Chen, prof. Olivier Temam, and prof. Chengyong
Wu. He is currently an associate professor at
the Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China.

Qi Guo (Member, IEEE) received the B.E. de-
gree in computer science from Tongji University,
Shanghai, China, in 2007, and the Ph.D. degree
from the Institute of Computing Technology, Chi-
nese Academy of Sciences, Beijing, China, in
2012.,From 2012 to 2014, he was a Staff Re-
searcher at IBM Research, Beijing. From 2014
to 2015, he was a Postdoctoral Researcher with
Carnegie Mellon University, Pittsburgh, PA, USA.
He is currently a Professor with the Institute
of Computing Technology, Chinese Academy of

Sciences. His research interests include computer architecture, pro-
gramming models, and machine learning.

Yongwei Zhao recieved the Ph.D. degree from the Institute of Comput-
ing Technology, Chinese Academy of Sciences, Beijing, China, in 2020,
and the bachelor’s degree in computer science and technology from
the Huazhong University of Science and Technology, Wuhan, China, in
2015. He is currently an assistant professor at the Institute of Computing
Technology, Chinese Academy of Sciences.

Xi Zeng received the bachelor’s degree in computer science and
technology from Central South University, Changsha, China, in 2015.
Currently she is working toward the PhD degree in the Institute of
Computing Technology, Chinese Academy of Sciences, Beijing, China,
and the University of Chinese Academy of Science, Beijing, China.

Ling Li is currently a professor at the Institute of Software, Chinese
Academy of Sciences, Beijing, China. She joined the Godson (Loong-
son) project, in 2009. She was the chief architect of Godson video de-
coding IP. She has authored or coauthored papers on journals (including
the IEEE Transactions on Image Processing, IEEE Transactions on Par-
allel and Distributed Systems, IET Image Processing) and conferences
(including DCC, SPAA, and ICASSP). Her research interests include
intelligent computing and video processing.

Zhiwei Xu (Senior Member, IEEE) received the B.S. degree from the
University of Electronic Science and Technology of China, Chengdu,
China, in 1982, the M.S. degree from Purdue University, West Lafayette,
IN, USA, in 1984, and the Ph.D. degree from the University of Southern
California, Los Angeles, CA, USA, in 1987.,He is currently a Professor
and the Chief Technology Officer (CTO) with the Institute of Computing
Technology (ICT), Chinese Academy of Sciences (CAS), Beijing. His
prior industrial experience includes the Chief Engineer of Dawning Cor-
poration (now Sugon as listed in Shanghai Stock Exchange), a leading
high-performance computer vendor in Beijing, China. He currently leads
the Cloud-Sea Computing Systems, a strategic priority research project
of the CAS that aims at developing billion-thread computers with elastic
processors.

Ninghui Sun (Member, IEEE) received the BS degree from Peking
University in 1989, and the MS and PhD degrees both in computer
science from the Institute of Computing Technology, Chinese Academy
of Sciences in 1992 and 1999, respectively. He is a professor in the
Institute of Computing Technology, Chinese Academy of Sciences. He
is the architect of the Dawning series high-performance computers. His
research interests include computer architecture, operating system, and
parallel algorithm.

Yunji Chen (Senior Member, IEEE) graduated from the Special Class
for the Gifted Young, University of Science and Technology of China,
Hefei, China, in 2002, and recieved the PhD degree in computer science
from the Institute of Computing Technology (ICT), Chinese Academy
of Sciences, Beijing, China, in 2007. Currently, he is a full professor
at Institute of Computing Technology, Chinese Academy of Sciences.
He leads his lab to develop neural network processors. Before that, he
participated in the Godson/Loongson project for more than ten years,
and was a chief architect of Godson-3 microprocessor. Yunji Chen has
authored or coauthored 2 books and over 90 papers. He was a recipient
of ASPLOS’14 and MICRO’14 best paper awards for advances in neural
network processors.

