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Abstract—Deep learning trends to use low precision numeral
formats to cope with the ever-growing model sizes. For example,
the large language model LLaMA2 has been widely deployed
in 4-bit precision. With larger models and fewer unique values
caused by low precision, an increasing proportion of arithmetic
in matrix multiplication is repeating. Although discussed in prior
works, such value redundancy has not been fully exploited, and
the cost to leverage the value redundancy often offsets any
advantages. In this paper, we propose to primitivize the matrix
multiplication, that is decomposing it down to the 1-ary successor
function (a.k.a. counting) to merge repeating arithmetic. We
revisited various techniques to propose Cambricon-C SA, a 4-
bit primitive matrix multiplication unit that doubles the energy
efficiency over conventional systolic arrays. Experimental results
show that Cambricon-C SA can achieve 1.95x energy efficiency
improvement compared with MAC-based systolic array.

Index Terms—Al accelerator, deep learning, large language
model, model quantization.

I. INTRODUCTION

In recent years, increasingly large deep learning models
have shown superior performance on various tasks [3], [32],
[38]. These large models are first quantized before widely
deployment to save the ever-growing computing costs. For
example, the large language model LLaMA-2 family includes
models with parameters from 7 billion to 70 billion, that
have been quantized to 4-bit with almost no performance
degradation [12]. As 4-bit quantization has been adopted as
the go-to solution for many popular models [9], [10], [18],
[37], [38], efficient 4-bit matrix multiplication is becoming
the core computation in accelerators these days.

Increasingly large models and low-bitwidth quantized data
together bring new opportunities to optimize matrix multipli-
cations. It is based on the observation that in these models,
most arithmetic operations involved in matrix multiplication
are duplicated. In LLaMA2-7B (4-bit), single output values
in specific matrix multiplication operators are summed over
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Fig. 1. Concept of Primitivized Matrix Multiplication (PMM). @ MAC
involves 4b multiplier and 24b adder, while @ PMM reduce the arithmetic
to 16b increment. ® lists the transistor count, energy consumption, and the
number of arithmetic operations, where 11008 is the matrix dimension in the
FFN layer in LLaMA2-7B.

11,008 4-bit-by-4-bit products, while 4-bit data formats can
only represent 2* = 16 unique values. As a fast corollary,
no more than 16 x 16 = 256 out of ~ 10* multiplications are
unique, and all others are duplicated. This reveals a significant
source of optimization.

To leverage the duplicated arithmetic operations, we propose
primitivized matrix multiplication (PMM), a novel algorithm
for low-bitwidth matrix multiplication. There are two key
differences between PMM and the conventional algorithm.

The first key difference is avoiding duplicated multipli-
cations by pre-computing a Look-up Table. Note that the
output values in matrix multiplication are obtained by com-
puting inner-products. For computing the output value y =
Zf\;_ol w;x;, N > 256, productions for all possible values in
w and x can be pre-computed and written as a vector m. For
4-bit integer represented in two’s complement, m should be



a 256-dimension vector

m= 0x0, O0x1, 0x2, ..., O0x-—1,
1x0, 1x1, 1x2, ..., 1x—1,
2%x0, 2x1, 2x2, ..., 2x—1, )
—1x0,-1x1,-1x2, ..., -1x-1],

storing all the products between {-8,-7,...,-1,0,1,...7} and {-8,-
7,..,-1,0,1,..7}. Then, the computation of y can be conducted
by looking up pre-computed products from m instead of per-
. . g . . N-1 T
forming multiplication for each term, ie., y =>_," ) pim ",
where p; is the one-hot vector which encoding (z;, w;), i.e.

1
0, otherwise.

, ifj=ux;0w;

Pi = [Po,P1,---,P255)s Dj = { )

The second key difference is to reduce the strength of addi-
tions. Since vector multiplication is distributive over addition,
we compute > p; first, and only multiply > p; by m™T once

in the last step, i.e., y = Zf\gl pi) m™. The major part
of computation ) p; is summing one-hot vectors. Therefore,
additions of binary numbers are reduced to increments to one
of 256 numbers. Increment, also known as I-ary successor
function, is the primitive arithmetic operation defining Peano
axioms, and is even lighter to implement than addition. For
example, adding two binary numbers requires full adders,
whereas half adders are sufficient for incrementing binary
numbers. As shown in Figure 1, it could be implemented by
256 counters with very sparse circuit activities (alternatively,
very low switching power).

Unfortunately, readers may quickly find out that simple
hardware implementation of PMM is not practical. A strait-
forward PMM implementation requires 256 counters per PE,
which cost ~ 45x area of a MAC unit seen in conventional
design. The excessive area causes increased leakage, canceling
the superiority on the computational efficiency brought by
PMM.

To bring PMM a practical implementation, we revisited
several key techniques, and came up with Cambricon-C, an
efficient 4-bit matrix unit. Cambricon-C reduced the number of
counters from 256 to 29 per PE by using quarter square mul-
tiplication, a technique dated back to 1817 in literature [14].
Cambricon-C also explored and selected the most energy-
efficient counter circuits. Designed with these key techniques,
Cambricon-C nearly doubled the energy efficiency compared
to the conventional 4-bit MAC-based systolic array.

We list our contributions as follows:

1) We propose the primitivized matrix multiplication (PMM)
algorithm, which reduces stronger arithmetic operations
(multiplications and additions) to primitive operations
(increments) for low-bitwidth matrix multiplication.

2) We revisited quarter square multiplication, which signif-
icantly reduced the number of counters required in the
design of a hardware implementing PMM.

3) We explored the design of energy-efficient counters, and
compared various designs based on synthesized circuits.
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Fig. 2. Language modeling performance (perplexity, lower is better) versus
memory footprint on LLaMA family. W4A4/W6A6 denotes all numbers are
quantized to 4-bit/6-bit. 4-bit quantized variants of LLaMA2-7B, LLaMA2-
13B, LLaMA-30B and LLaMA-65B are most performant under 4 GB, 8 GB,
24 GB and 40 GB limits, respectively [27], [41].

4) We propose Cambricon-C SA, an efficient 4-bit matrix
unit via PMM. The results show that Cambricon-C SA
can achieve up to 1.95x energy efficiency over the
conventional MAC-based systolic array. We also evalu-
ated the complete accelerator Cambricon-C ACC, which
achieves 1.13-1.25x overall improvement of energy ef-
ficiency when compared with TPU over various DNN
workloads.

II. BACKGROUND AND MOTIVATION
A. Emerging 4-bit Large Models

Deep learning has become instrumental across various do-
mains, including computer vision, natural language process-
ing (NLP), and speech recognition. A significant milestone
in the wide adoption of deep learning was achieved with
AlexNet [24], which, with 60 million trainable parameters,
outperformed all competitors in the 2012 ImageNet competi-
tion. This breakthrough was followed by VGGNet [37], scaling
up to 138 million parameters and further demonstrating that
larger models could achieve higher performance levels.

The scale of models has been closely linked to their per-
formance capabilities [20]. This trend is exemplified by the
evolution from earlier recurrent networks [7] (I5M param-
eters) to the more expansive models like Transformers [39]
(65M parameters) and BERT [9] (up to 340M), and to the
modern large models like LLaMA?2 [38] (up to 70B) and GPT-
4 [30] (size not disclosed). With parameter counts moving
from millions to hundreds of billions, modern large models
have set new benchmarks in natural language processing.

However, their size also imposes significant demands on
the computational resources required for inference on various
devices. The continuous growth in model scale and the limi-
tations of hardware resources have necessitated the adoption
of quantization techniques. As large models with billions of
parameters are exceeding the memory capacity of the most
powerful consumer-grade hardware (e.g. LLaMA2-13B FP16
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Fig. 3. Power breakdown on a minimalist MAC-based systolic array process-
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does not fit in a GeForce 4090), their quantized variants as low
as 4-bit have never been more widely deployed. Figure 2 plots
the language modeling performance (perplexity on WikiText2
dataset, lower is better) and memory footprint to load weights
for LLaMA family models. It shows that quantized larger mod-
els are often more performant than smaller models with higher
precision. For devices with 4GB, 8§ GB, 24GB or 40GB
memory budgets, 4-bit variants are the best models that fit
in the limit. To meet these demands, popular inference servers
including GGML [13], vLLM [26], TensorRT-LLM [29] and
OpenVINO [31] are supporting 4-bit quantization out-of-the-
box. These emerging practices emphasize the efficiency of 4-
bit matrix multiplication algorithms and hardware.

B. 4-bit Matrix Units

Systolic array (SA) based on multiply-accumulate units
(MAC) has been considered well-understood for its 45 years
of history [25], and has been recognized as the paragon micro-
architecture specialized for matrix multiplication. To place
more MAC units into SA under the same budget, quantization
is introduced. Compared to FP32, INT8 MAC-based SA can
bring an order-of-magnitude reduction in energy and area [33]
and the precision is sufficient for most inference workloads.

However, with lower precision, the efficiency return is
diminishing. Figure 3 shows a minimalist implementation
of MAC-based SA PE and evaluates its power at different
precision. From INT16 to INT8 and from INTS to INT4, the
boolean complexity of the function of the PE is expected to
reduce by a factor of 3.3 ~ 3.6, but the power is only reduced
by a factor of 2.5. This means that whenever the quantized
bit widths are halved, a 27.5% tax will be charged for MAC-
based SA. When it comes to INT4, the actual computational
efficiency is no longer excellent.

The reason is two-fold. First, the quantization effect is
showing, and becoming non-negligible at INT4. INT4 can
only represent 16 unique values, thus there are no more than
256 unique cases in INT4 multiplication. However, the matrix
dimensions processed by SA are often far above 256. This
means that most arithmetics are repeating themselves, causing
wasted energy.

Second, the power of the accumulator is dominating. Quan-
tization reduces the width of the multiplier, but the width of
the accumulator is limited by the max matrix dimensions to
support. The accumulator must be guaranteed not to overflow
on the largest matrix. Assuming the multiplication of n-order
square matrices, the accumulator must have log, n more bits

than the product. For INT4, the accumulator requires 24 bits
or even higher. Compared with the multiplier (double 4-bit in,
8 bits out), the power consumption of the accumulator (24 bits
saved, 8 bits in) is 3.07 times of it. As shown in Figure 3, as the
bit width decreases, the power consumption for multiplication
decreases rapidly, while the power consumption for addition
and registration decreases slowly and becomes dominating.
Without improving the efficiency of accumulation, the returns
brought by quantization must diminish.

There are several proposals as alternatives to MAC-based
SA, in which some have acknowledged the above-mentioned
problems. For example, Stripes [23] adopted bit-serial comput-
ing scheme and removed the need for multipliers, thus avoid-
ing the wasted energy on redundant multiplications. However,
it also suffers from increased accumulation. There are follow-
ing works on the bit serial computing scheme to further exploit
potential computational redundancy in matrix multiplication,
including Pragmatic [1], Bit-Tactical [8], Loom [36], La-
conic [35], etc. There are also works addressing the repetitive
arithmetic by lookup, such as UCNN [19], FuseKNA [40],
Cambricon-P [17], and CARAT [34]. However, none of these
works are targeting 4-bit or lower. On INT4, although the
repetition is abundant, INT4 arithmetic is too small such that
there is not enough workload to hide overheads brought by
complicated architectures. Excluding Stripes which is simple
enough, these proposals are hard to achieve net improvements
on INT4.

In summary, we need to develop a new technique for 4-bit
matrix multiplication. It should save the repetitive arithmetic
and reduce the strength of accumulation. The algorithm must
be simple and neat, such that not incur too much architectural
overhead to implement. In the next section, we propose the
algorithm of Primitivized Matrix Multiplication (PMM).

ITI. ALGORITHM
A. Primitivized Matrix Multiplication

We have formally introduced Primitivized Matrix Mul-
tiplication (PMM) in Section 1. Here we demonstrate the
computational process of PMM with concrete examples.

Figure 4 shows a naive implementation of previously de-
fined PMM, and gives an example matrix multiplication to per-
form. The shown PMM matrix unit is organized as an output-
stationary SA, in which each PE undertakes an inner-product
and produces a complete output value without interruption
(Figure 4 @). Inside each PE, there is a counter array including
256 counters to compute Y p; by increments (Equation 2).

We take the top-left PE as an example. In this example,
this PE receives row-vector [1,2,—2,2] and column-vector
[-1,1,0, I}T. The inner-product to produce should be 3. As
encoded in two’s complements, —2 is represented as E (14)
and —1 is represented as F (15). The elements in both input
vectors are systolically sent to this PE.

At the first cycle, this PE receives 1 and F' (Figure 4 @).
The PE selects and activates the counter corresponding to
(1, F) and increment it, to record an occurrence of the term
1 x F'. The value in this counter is increased from O to 1. In
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the following three cycles, three more terms arrived, and the
values in the corresponding counters are increased accordingly
(Figure 4 ®00). Although each PE include many counters,
there is only one counter activated per cycle. The power
consumption of a counter is significantly lower than a MAC
unit. As a result, the switching power is still much lower than
the conventional MAC-based PE.

After the systolic processing of the input matrices, the PEs
get > p;. There is a last step to multiply by m™ (Equation 1)
to get the final result. This step is an inner-product between
fixed length vectors (3 p; and m7T, 256 elements), and is
completed in a dedicated Converter (Figure 4 ©). Because
the length is fixed and often much shorter than the dimension
of original matrices under computation, the amortized cost of
converting is negligible.

However, including too many counters will bring excessive
area and leakage power costs. The naive PMM-based PE im-
plementation in Figure 4 @ costs ~ 45 x area of a conventional
MAC-based PE, and almost half of the power is burnt by
leakage. Therefore, we must find a technique to significantly
reduce the number of counters used in the design, to achieve
net improvement on energy efficiency.

B. Quarter Square Multiplication

Quarter square multiplication (QSM) is an old technique
to compute products easier with the help of lookup tables.
Literature records that QSM has been applied in 1817 when
people rely on lookup tables and slide rules to perform
arithmetic [14]. In 1970, this scheme was introduced to imple-
ment binary multipliers when transistors were expensive [6].
However, with the rapid development of semiconductor and
computer technology, QSM is no longer in use today. In
this paper, we revisit QSM to reduce the counters in PMM
implements.
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Fig. 5. A 29-counter PMM implementation via QSM. @ Each PE include a 4-
bit adder, a 4-bit subtractor, 15 up-counters and 14 down-counters. @ Example
computing 3 x 5, select and increment up-counter |3 4 5| and down-counter
|3—5|. Note that counters are numbered starting from 2. ® Converter subtract
values from up-counters by down-counters, and multiply by QT (Equation 6)
to get final result.

It is intuitively obvious that

(z+y)° (@—y)’

4 4

=zy. 3)

When x and y are integers, xy must be integer as well.
Additionally, © + y and x — y are either both even or both
odd, such that the divisions in Equation 3 always generate
canceling remainders. In other words, we have

(z+ Zl/)2 =(z— y)2 mod 4. )
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Fig. 6. Overall architecture of Cambricon-C ACC

As corollary,

{(x—ié—ly)QJ _ {(:U—Zlny =y, x,y€Z. (5

With a pre-computed lookup table of quarter squares Q(n) =
Ln2 / 4J, the product xy can be computed with an addition, a
subtraction, and lookup @Q(n) twice.

The lookup table Q(n) is much shorter than the naive m
given in Equation 1. For the 4-bit integer represented in two’s
complement, z+y lies in [—16, 14] and z—y lies in [—15, 15].
Due to the symmetry of Q)(n) about zero, Q(n) for negative
n equals Q(—n). Moreover, since Q(0) = Q(1) = 0, the
range can be further trimmed down to [2,16], 15 terms in
total. Specifically, represented into a vector again, they are

Q =[1,2,4,6,9,12,16,20, 25, 30, 36, 42, 49, 56, 64] . ~ (6)

As shown in Figure 5, with the help of QSM, the required
counters for implementing PMM reduced to 29 per PE,
including 15 up-counters for x + y, and 14 down-counters for
x — y. If provided, the 29 up/down counters can be merged
into 15 bidirectional counters. This is due to the fact that
|z + y| = |z — y| implies zy = 0, such that the activated
counters will not conflict on effectual data.

As there is still some overhead introduced with QSM, most
noticeably of which is a pair of the 4-bit adder and subtractor,
the best design needs to be explored. In the next section, we
list various design candidates (with and without QSM) and
compare them based on synthesized circuits.

IV. ARCHITECTURE

In this section, we propose several candidate architectures
for Cambricon-C, and compare them based on synthesized
circuits. We first describe the overview. As counters play a
significant role in PMM implementations, we discuss several
ways to implement counters. At last, we explore and discuss
the design candidates for the PEs and Converters.

A. Overview

Figure 6 illustrates the overall architecture of our pro-
posal. First, we build a SA based on PMM, referred to as

Cambricon-C SA. Same as previously described in Figure 4 @,
Cambricon-C SA assumes the output-stationary systolic data
flow. Different from conventional SA, Cambricon-C SA re-
quires an additional converting step to get the final result.
Therefore, there is a converter at the end of the readout data
path. The design of the converter is dependent on the design
of PE, which will be discussed later in this section.
Furthermore, we build a complete accelerator architecture
for evaluation, referred to as Cambricon-C ACC. Cambricon-
C ACC adopts a classic 3-buffer neural network accelerator
framework from DianNao [5]. It has 128 KB input neuron
buffer (NBIn), 128 KB output neuron buffer (NBOut), and
256 KB synapse buffer (SB). Buffers and main memory are
connected with a direct memory access module (DMA). The
main compute unit in Cambricon-C ACC is a Cambricon-C
SA of 32 x 32 PEs. We will discuss the PE designs later
in this section. Besides the Cambricon-C SA, there is also a
vector special function unit (SFU) to perform activation, nor-
malization, and quantization for the output data. The controller
(Ctrl) orchestrates all modules in Cambricon-C ACC, and is
accompanied with a 8§ KB instruction buffer (IB).

B. Counter

Counters play a significant role in Cambricon-C as its
power and latency decide the efficiency and performance of
Cambricon-C SA. Hence it is essential to understand the
design of counters before diving into the design of PEs. In
this work, we have explored three types of counters, includ-
ing SRAM-based counters, ripple counters, and bidirectional
counters.

SRAM-based counters

The most important characteristic of PMM is its sparse
activity. PMM requires numerous counters to store the values
in > p; (Equation 2), but there is only one (two if QSM
enabled) of these counters acted per cycle. Intuitively, we
consider efficient storage over incrementing. That is, using
SRAM to store values, and using half adders to compute the
increments.

Figure 7 @ shows the circuit design of SRAM-based coun-
ters. The SRAM is dual-port, one port for read and one port
for write. Values are saved row-wise in the SRAM cell array.
On incrementing, the read port wordline decoder in the SRAM
peripheral translates the address to enable one of the read port
wordlines. The corresponding row of cells is activated, and
the value in the cells is read out through read port bitlines
by sense amplifiers. Increment to the value is performed by
ripple-carry half adders connected to the read port of SRAM.
After the increment, the value is buffered in the register for a
cycle, and starts to write back to the SRAM in the next cycle.
The write port wordline decoder follows the read port, and
activates the same row by enabling the write port wordline.
The new value is written into the SRAM cells by write drivers.
As the SRAM is dual-port, in the writing cycle, the counter
can start reading the next value, achieving one incrementing
operation per cycle. SRAM adopts a read-after-write strategy
on port address conflicts.
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The SRAM-based counter has the following pros and cons:
o Pros:

1) Efficient storage for idle values. Using SRAM, values are
stored in cells (latches) instead of flip-flops, such that both
the area and the leakage current are under good control.
Even though the naive PMM requires numerous counters,
the static power of the SRAM-based counters is still lower
than the MAC unit.

2) Mainly implemented in highly optimized standard macro.

o Cons:

1) Inefficient incrementing. Incrementing is performed out-
side of SRAM, so that the data path involved in incre-
menting is the longest among all discussed designs of
counters. The register between SRAM and adders is also
consuming a considerable portion of energy.

2) Hard to trim unnecessary counters. For example in naive
PMM implementation without QSM (Figure 4), 31 out of
256 counters are accumulating zeros. However, it is hard
to customize SRAM to remove these ineffectual counters,
which means to modify the wordline decoder and cell
array structures.

Ripple counters

Due to various limitations of SRAM, we consider efficient
incrementing as well.

Ripple counters as shown in Figure 7 @ are the simplest
practice of unidirectional counters. Ripple counters are built
with a series of 16 D flip-flops (Dff), each storing a bit of
current value. The inverse data output Q of each Dff is fed
back to the data input D, so that on the positive edge of the
clock signal, the stored bit is flipped. Q is also connected to
the clock of the next Dff, sending a positive clock edge to the
next Dff on value transit from 1 to 0, effectively implementing
carry propagation. On incrementing, feed a positive clock
edge to the least-significant Dff in the ripple counter, the
least-significant bit is flipped, and it ripples to the next Dff
automatically until the carry propagation is stopped. Therefore,
without full adders or half adders, ripple counters implemented
incrementing purely based on Dff.

Ripple counter has the following pros and cons:

s Pros:

1) Efficient incrementing. Unless the value is carrying to the

high bits, the higher-significant flip-flops are not activated.
In the sense of amortized costs, only two flip-flops are
activated per cycle, resulting in dynamic power savings.

2) High speed. Flip-flops in ripple counters are self-timed so
that other parts in the circuit do not need to wait for the
end of the ripple before moving to the next clock cycle.
The latency is significantly shorter than other designs
based on half adders.

3) Easy to customize. As the decoder is fully customized,
it can decode the address with various transformations,
including trimming the ineffectual addresses, taking the
absolute values (as required in QSM), etc.

o Cons:

1) Larger area and leakage. Compared to SRAM-based
counters, ripple counters store values in flip-flops, which
are significantly larger than SRAM cells and suffer higher
leakage currents.

2) Unstable while incrementing. Ripple counters cannot be
read until the carry propagation is complete, which lasts
for an unknown time span. However, in PMM imple-
mentations the counters are write-only before read out
for converting to the final result, thus this issue is not
important.

Bidirectional counters

As QSM involves both up and down counting, we also
explore bidirectional counters. With bidirectional counters, the
implementation with QSM can combine the up and down
counters, reducing the number of counters from 29 to 15.
Intuitively, designs with QSM and bidirectional counters are
potentially saving area and static power.

Figure 7 © shows the circuit of bidirectional counters.
They are basically registers accompanied with a combinational
arithmetic unit, which is capable of incrementing and decre-
menting.

Bidirectional counter has the following pros and cons:

o Pros:

1) Combined up/down counters required in QSM, may lead
to the smaller design.
2) Same as ripple counter, it is easy to customize.

o Cons:
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1) Larger area and leakage. The added combinational circuit
is causing increased area and static power.

2) Less efficient than ripple counter. Unlike ripple counters
that only activate the Dffs on demand, a bidirectional
counter must activate all bits in a value for incrementing
or decrementing. This causes increased dynamic power.
For example, the value in the bidirectional counter may
oscillate around —1 ~ 0, resulting in the flip-flops
flipping between 000 ...00 and 111 ... 11 back and forth.

With these different choices for counters, we came up with
several design candidates for Cambricon-C SA. Each design
has a different architecture for PE and Converter. We dive
into these architectures to make a comparison in the next
subsection.

C. PE Designs

Figure 8 illustrates six designs of PE, including MAC,
S256, R225, S32, R29, and B15. The naming of PEs is
derived from the initial letter of the counter type and the
number of counters within the PE. Table I summarizes the
comparison of each PE design.

MAC is the well-studied design for conventional systolic
array, without PMM. Because Cambricon-C SA is assuming
output-stationary data flow, we removed redundant compo-
nents from MAC, making it specific to the output-stationary
data flow. In MAC, the accumulate register is set to 24 bits
to guarantee no overflow for matrices up to 65k dimensions,
equivalently to 16-bit counters in PMM implementations. The
netlist-level simulation result shows that MAC can run at
357MHz clock frequency, and the area is 1422 um?. The en-
ergy consumption per operation of each MAC PE is 2.508 pJ.

S256 is the design with PMM and SRAM-based counters
but without QSM. S256 uses 256 SRAM-based counters.
Although there are 31 out of 256 terms in m zero, leaving
these counters in the design is still most beneficial, because
the decoder in SRAM is hard to customize. In S256, two
4-bit input values are concatenated into the 8-bit address,
which is directly addressing the SRAM. The SRAM can run at

970 MHz, costing 1.365 pJ access energy and 21138 um? area.
A complete S256 PE costs 21480 um? and 3.367 pJ. Because
the number of counters is too large, S256 is suboptimal in
these design candidates.

R225 is the design with PMM and ripple counters, but
without QSM. R225 uses 225 ripple counters, removing the
31 zero terms where either side of inputs is zero. The decoder
in R225 is designed in two 4-bit to 15-bit one-hot decoders
(excluding zero) to select row-lines and column-lines. The
counter is activated by the logical-and between its row line
and column line. Based on flip-flops, R225 has a higher area
and leakage power compared with S256. The area of R225
is 57113um? and the static power constitutes nearly half of
the total power of R225. However, with the lower read/write
energy, the total energy of R225 is lower than S256, at
2.525 pJ. Although better than S256, the number of counters
is still not tolerable, R225 is also suboptimal in these design
candidates.

S32 is the design with PMM, QSM, and SRAM-based
counters. QSM decreased the number of counters, but two
counters are activated per cycle, thus S32 is using two banks
of SRAM-based counters, 16 words each. Once again, due to
the non-customizable SRAM structure, the capacities of both
banks are rounded up to 16. The 16 terms are counting for
Q(n),n € [1,16]. n is computed by a 4-bit adder/subtractor
as explained in Section III-B. If n = 0, the SRAM is disabled.
If n = 16, the address is wrapped back to 0. The area
of the SRAM is 11442um? in total, the frequency of the
SRAM could reach 1170 MHz, and each data access consumes
0.217pJ. The total energy consumption of the S32 PE is
reduced to 2.439 pJ, with a total area of 13045 um?. Although
significantly reduced the number of counters, QSM increased
the incrementing counters per cycle from 1 to 2, so that the
inefficient incrementing in SRAM-based counters started to
take effect. S32 is suboptimal.

R29 is the design with PMM, QSM, and ripple counters.
R29 is using 15 up counters and 14 down counters as the same
as explained in Section III-B. Since the decoder is customized,
it can translate z+y and z—y to |x+y|—2 and |z —y|—2 with
negligible overhead. As a result, 3 ineffectual counters left in
S32 are trimmed. QSM decreases static power by reducing the
number of counters, and ripple counters exhibit lower dynamic
power compared to other types of counters. Consequently, the
R29 PE emerges as the optimal design among all discussed
candidates, with an energy consumption of 1.274pJ and an
area of 8914 um?.

B15 is the design with PMM, QSM, and bidirectional
counters. B15 uses bidirectional counters so this design only
needs 15 counters. The area and power of B15 are 9821 um?
and 2.734 pJ, respectively. The energy efficiency is worse than
R29.

Table I lists the key characteristics of different PEs. PEs with
SRAM-based counters or ripple counters can run at 400 MHz,
higher than the baseline MAC. This is because SRAM-based
counters break the incrementing into two cycles, and ripple
counters have low latency as previously analyzed. Take R29
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Fig. 9. The circuit design of the converter for R29.

as an example, the critical path only needs to go through a 4-
bit adder/subtractor and a decoder, ending at the first flip-flop
of the counter. It is quite simpler than in MAC which includes
a multiplier and a 24-bit adder.

In summary, we select R29 as the PE design in Cambricon-
C SA because of its excellent energy efficiency and speed.
Although the area is much larger than the baseline, the sig-
nificant reduction in power makes Cambricon-C SA valuable
under power-sensitive scenarios.

D. Converter

Different PE designs are paired with different converter
designs. As we have chosen R29, in this subsection, we focus
on the converter design matching R29. As shown in Figure 9.
The converting process is divided into four steps:

1) Counter Readout (®): The converter is directly connected
to all of the counters in Cambricon-C SA through the
multiplexer. In each cycle during the converting process,
values stored in all PEs in one column are selected and
read out.

2) Subtraction of Counter Values (@): The converter then
subtracts the values from the down counters from the
corresponding values in the up counters.

3) Multiplication by Pre-loading Value (®): The result from
the subtraction is then multiplied by a pre-loaded value
stored in QREG, denoted as @ in Equation 6.

4) Final Output (@®): The multiplication result is summed
to yield the final output.

In terms of power consumption, the converter does not

operate during the incrementing phase of Cambricon-C SA,

TABLE I
QUANTITATIVE COMPARISON OF PE DESIGNS.

PE Design  Area (um®) Energy (pJ)  Frequency (MHz)
MAC 1422 2.508 357
S256 21480 3.367 400
R225 57113 2.525 400
S32 13045 2.439 400
R29 8914 1.274 400
B15 9821 2.734 300

which means it primarily incurs static power consumption.
The static power consumption is amortized since PEs from
different columns share the same converter circuit by time
multiplexing. For 2048-dim square matrix multiplication, the
conversion power is only 1.4% of the total power consumption.
In terms of the area, the converter occupies an area of
36749 um?, showing the area overhead is not significant.
Converters for different PE designs behave differently. For
example, converters for PE designs without QSM require much
more cycles and joules due to larger lookup tables and more
counters. And the converter for B15 does not require step @.
Due to these differences, we evaluate all these designs in the
experiments in Section VI and show energy breakdowns.

V. METHODOLOGY
A. Quantization Network

Table II shows the 8 DNN models we evaluated, spanning a
range of architectures including convolutional neural networks
(CNNs) and transformers. The quantization methods used for
each model are also listed. Those marked with an asterisk*
represent quantization-aware training techniques, which can
quantize the model to 4-bit without any loss in accuracy.

Cambricon-C SA can effectively work with different quan-
tization methods. For each output or channel, it needs a
consistent quantization ratio to be applied. Two key quanti-
zation methods are LSQ [11] and KDLSQ [22]. Concretely,
LSQ considers the quantization scale factors as trainable
parameters and is able to achieve 3-bit precision without
accuracy loss on models like VGG16 and ResNet18. KDLSQ
uses knowledge distillation [21] to assist in quantizing
the network, enabling BERT-base to achieve slight accuracy
improvements even when quantized to 4-bit. Cambricon-C
SA also supports popular LLM quantization methods like
QLLM [27]. These methods often partition the weight matrix
into multiple blocks to handle outlier weights. This weight
partitioning could potentially interrupt the increment-based
computation in Cambricon-C, leading to performance degrada-
tion. Fortunately, the partitioning is conducted along the output
dimension, so each weight block still contains all the weights
required for a single output value. This allows Cambricon-C
SA to maintain its advantages with these LLM quantization
techniques.

Rank is an important metric that indicates the optimization
potential of Cambricon-C for different models. A higher rank

TABLE I
THE DNN BENCHMARKS.
Model # Param. Quantization Avg. Rank
VGG-16 138 M N 1141
ResNet-18 112 M LsQ* 1) 730
BERT-Base 110 M * 789
BERT-Large 340 M KDLSQ* [22] 1045
OPT-1.3B 1.3B 2235
OPT-2.7B 27B 2664
LLaMA27B  66B  QIMITI 4013
LLaMA2-13B 12.7 B 5002




Fig. 10. The circuit design of the modified SIP

allows Cambricon-C to better leverage its advantages. We
define rank as the number of MAC (multiply-accumulate)
operations required to compute one output value in a ma-
trix multiplication. For example, in the matrix multiplication
R xd2 Rd2Xds — Rd1%Xds the rank is dy. In the case of DNN
models, the rank for convolutional layers is determined by the
filter size. For a 3 x 3 x 512 filter, each output value requires
3 x 3 x512 = 4608 MAC operations, so the rank is 4608. For
fully connected layers, the rank depends on the embedding
dimension. Table II presents the average rank across all layers
for each DNN model we evaluated. Generally, CNN models
tend to have a higher average rank than transformer models,
since the dimensions of K QV matrices in transformers are
often smaller, like 64 or 128. These smaller matrix multipli-
cations reduce the average rank. In contrast, for LLMs, the
hidden layer dimensions are much larger, often on the order
of 2048 or 4096. The feedforward layers also have very high
ranks. This provides an opportunity for Cambricon-C to fully
leverage its advantages, as its performance scales well with
higher-rank matrix multiplications.

B. Hardware Configuration

For Cambricon-C PE we implemented S256, R225, S32,
R29, and B15. We choose the R29 to implement the complete
Cambricon-C ACC.

The SRAM in S256 and S32 is modeled by Open-
RAM [16] and the SRAM buffer is modeld by CACTI7 [2].
Other designs are implemented by the Verilog RTL. We use
Synopsys Design Compiler (DC) to synthesize the netlist
under FreePDK 45nm technology node [28]. The energy was
obtained by the Prime-Time PX with gate-level value change
dump (VCD). The cycle-level hardware simulator for 4-bit
DNN models was built based on ANT [15].

We evaluated the DNN performance on the traditional
MAC-SA (i.e. TPU), Stripes, and Cambricon-C ACC. For
the TPU and Cambricon-C ACC, the computation unit is
implemented as 32 x 32 systolic array. The details of the
implementation of MAC and Cambricon-C PE are presented
in Section IV-C.

For Stripes [23], it takes SIP as the computation unit. We
slightly modified the structure of SIP as depicted in Figure 10.
Compared to the original design, the modified SIP removes the
redundant modules such as the comparator for max pooling,
which are denoted in green. Additionally, we replaced the

precision shifter with a 24-bit adder and a 24-bit register to
meet the precision requirements. As the 24-bit adder in the
SIP is not always active, it does not contribute much energy
consumption. We also insert a pipeline stage in the adder
tree to ensure it can run at 400MHz clock frequency. In the
end, each SIP dissipates 2.265pJ and takes up 1701 um?.
For the complete design of Stripes, we set 1024 SIPs, whose
computation ability is the same as the TPU and Cambricon-C
SA.

VI. EVALUATION

In this section, we first evaluate the power and area overhead
of Cambricon-C in Section VI-A. Then, In Section VI-B, we
introduce the power consumption of baselines and Cambricon-
C. In Section VI-C, we extend the converter that constitutes
the Cambricon-C SA for the complete matrix multiplication.
Section VI-D presents the performance of Cambricon-C ACC
on various DNN models. Finally, we compare Cambricon-C
with other computation unit in Section VI-E.

A. Hardware Characteristics

Table IIT presents the details of hardware characteristics.
The full Cambricon-C ACC Core takes up 21.39 mm? area,
and the peak power reaches 3199.96 mW at the 45 nm
technology node. For the baselines, the TPU and modified
Stripes occupy 10.62 mm? and 10.50 mm? respectively, with
2347.66 mW and 2248.33mW power consumption when
normalized to the 400MHz situation.

The value of the peak power of TPU and Stripes are
lower than Cambricon-C. However, for Cambricon-C ACC,
there are some modules that are not activating most of the
time. It will make the average power of Cambricon-C ACC
quite lower than the baselines. Though the on-chip area of
Cambricon-C ACC is larger than baselines. Considering the
off-chip memory, especially in the LLM situation, which needs
a large capacity of off-chip memory, the extra area overhead
of Cambricon-C is subtle. Besides, as Cambricon-C could
run at a higher clock frequency than TPU, it will save more
static energy of SRAM and off-chip memory, which will cause
considerable energy consumption for the total system.

TABLE 111
HARDWARE CHARACTERISTICS.

- Area (mmz) (%)  Power (mW) (%)
Cambricon-C ACC 21.39 100 3199.95 100
Cambricon-C SA 12.23  56.90 1879.36  58.97
R29 Array 9.13 4247 52224  16.39
Converter 310 1444 940.86  42.59
SFU 1.06 491 193.55 6.07
NBIn 1.95 9.07 46933  14.73
SB 1.10 5.12 242.34 7.60
NBOut 2.63 12.23 297.04 9.32
Ctrl 0.11 0.51 20.02 0.63
1B 0.36 1.67 10.11 0.32
MC 0.23 1.07 33.20 1.04
PHY 1.83 8.51 41.78 1.31
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TABLE IV
POWER BREAKDOWN OF PES, NORMALIZED TO 400MHz.
Reg & .

Power (mW) SRAM Comb. Static Total
MAC [33] 0.4254  0.5680 0.0098  1.003
SIP [23] 0.5396 03546 0.0122  0.906

S256 1.3221  0.0168 0.0078  1.347
R225 0.4210 0.1054 04836 1.010
S32 0.8485 0.1216  0.0054 0.975
R29 0.2224  0.2084 0.0790 0.510
B15 0.4995 0.5056 0.0886 1.094

B. Power Breakdown of the PE

To further explore the performance of Cambricon-C, we
break the power consumption of PEs of Cambricon-C and
baselines in Table IV.

First, since Cambricon-C primitives the MAC to the count-
ing, the power consumption of combination circuits in most
Cambricon-C schemes is lower than that of MAC and SIP.

Besides, the benefits of QSM are evident. For the design of
S256 and S32, the gain of power is mainly from reducing the
data access power of SRAM, as the size of SRAM decreases
from 256 words to 32 words. Although the number of access of
SRAM doubles, S32 still gets net benefit. However, as QSM
activates two counters per cycle, it introduces an additional set
of 16-bit registers and half-adders. It makes the gain of QSM
limited on SRAM counters schemes. For R225 and R29,
the benefits of QSM mainly lie in reducing the static power.
Since ripple counters are based on the cascading of Dffs, they
needs more transistors to store counting values compared to
the SRAM counter. Reducing the number of counters can
significantly reduce the static power.

The R29 is the most energy-efficient design. For both the
R225 and R29, the power consumption of the sequential
circuit is also lower than that of MAC and SIP, though there
are lots of Dffs. This is due to the low switch activity of ripple
counters. It significantly reduces the power consumption of the
sequential circuit compared to all other schemes. In the end,
the energy efficiency of R29 can be improved by 1.97x than
MAC at most.

For B15, it doesn’t benefit from the bidirectional counters.
The power of B15 is higher than S32 and R29. First,
the counter has a more complicated circuit for bidirectional
counting. It leads to higher combination power consumption
and limits the maximum frequency. Besides, the bidirectional
counting leads to more bit flip of counters, which brings higher
power consumption.

C. Analysis with the Matrix

In this section, we compare the energy performance between
MAC-SA, Stripes, and five kinds of PEs of Cambricon-C for
matrix multiplication. For Cambricon-C SA, the complete pro-
cess of matrix multiplication includes counting and conversion.
The power consumption of the R29 converter is 42.41 mW,
which is much higher than the PEs. However, the converter
only runs once at the end of the multiplication operation, so it
contributes a little to the total energy. For the MAC-SA and the
Stripes, the final result is obtained directly without conversion.
Thus, the conversion energy is 0.

Figure 11 illustrates the performance of various designs on
matrix multiplications with different dimensions, from 64 to
8192. When the matrix dimension is small, the energy con-
sumption of the converter dominates, resulting in no advantage
for Cambricon-C SA over MAC-SA and Stripes. When the
matrix dimension reaches 128, the R29-based Cambricon-
C SA surpasses MAC and SIP, and becomes the most
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energy-efficient method. As the matrix dimension increases,
Cambricon-C SA approximate to the maximum benefit.

To further explore Cambricon-C SA, we break down the
total energy into the conversion, compute, and static energy
in Figure 11 bottom. First, we compare the different schemes
of Cambricon-C SA in general. For the S256 and S32, the
converter is a 8b x 16b MAC unit, which means they need
multiple cycles to complete the conversion. Though the static
power of the S256 and S32 are quite lower than other
Cambricon-C PEs, the high conversion energy and computa-
tion energy can’t bring performance improvement. For R225
and R29, the computation energy is lower because the energy
required for data access in D flip-flops is not as high as that
for SRAM. When incrementing, it doesn’t activate the 16-bit
register. Additionally, for R29, it could read out and convert
all data in counters at once, which reduces the conversion
energy consumption. For the B15, it pursues the least number
of counters, which has the lowest conversion energy. However,
it leads to a more complicated circuit design for counters,
which brings a higher computation energy.

The benefits of QSM are significant. For S32, these benefits
come in two parts. On the one hand, as the capacity of
SRAM decreases, the energy consumption per data access also
decreases. On the other hand, the converter requires only 29
cycles to complete the data conversion, effectively reducing the
energy consumption to an acceptable level. Also, in the R29,
the QSM brings lower static power, and the converter only
needs to process the 29 x 16-bit counting results, not 225 x 16.
It makes the R29 become the most efficient scheme. Finally,
R29 achieves performance gains of approximately 1.95x and
1.76x compared to MAC and SIP, respectively, which is quite
close to the theoretical maximum gain.

D. Performance on DNN models

The advantages of Cambricon-C lie in high-dimension
matrix multiplication, which is widely present in DNNs.
In Table II, we present the average rank of each network.
Even the smallest network in the benchmark, ResNet-18, also
has an average rank exceeding 512. This indicates that the
Cambricon-C has an excellent optimization potential for kinds
of DNNs, not limited by the LLM.

To further demonstrate the advantages of Cambricon-C, we
implemented a complete on-chip system, Cambricon-C ACC.
Both the array size of TPU and Cambricon-C ACC are 32 32.
The input data for simulation is sampled from the real neural
network. Figure 12 shows the performance of Cambricon-C
ACC and TPU in various networks.

The Cambricon-C ACC consistently outperforms TPU
and Stripes across various DNN models. In ResNet-18,
Cambricon-C ACC shows 1.13x energy improvement on TPU
and 1.06x on Stripes. In LLaMA2-13B, the improvement
increases to 1.25x and 1.15x respectively. These enhance-
ments are attributed to two factors. First, Cambricon-C ACC
could run at a higher clock frequency than TPU, which leads
to a lower static power of buffers (i.e. NBIn, NBOut, and
SB). Second, the dynamic power of the computation array
decreases. Beyond the buffer, the Cambricon-C SA achieves
1.53x and 1.51 x improvement compared to the computational
units in TPU and Stripes, respectively. The energy gain of
Cambricon-C SA is not as high as depicted in Figure 11.
There are two main reasons for this. First, MAC and SIP
are more sensitive to data distribution compared to R29.
Second, the stall cycles in R29 contribute to higher static
power consumption than other two schemes.

E. Comparison with Other Methods

We also reproduce the CARAT [34], FuseKNA [40], and
Bit-Pragmatic [1], which are designed as alternatives to com-



TABLE V
ENERGY CONSUMPTION OF PES

Design Energy (pJ)  Frequency (MHz)
MAC [33] 2.508 357
SIP [23] 2.265 400
PIP [1] 2.549 400
FuseKNA [40] 6.450 400
CARAT [34] 6.638 400
R29 1.273 400

mon MAC units. These designs achieve energy efficiency
improvements under 8-bit and 16-bit scenarios. However,
as discussed in Section II-B, the circuit design for INT4
computation is quite simple and neat, making it challenging
to achieve net gains in the INT4 context.

Table V presents the average energy consumption when PEs
perform matrix multiplication. The performance of CARAT
and FuseKNA drops significantly. CARAT is suitable for the
float point data. For INT4, it requires a wider computation
array to shed the throughput loss. However, this wider array
size results in increased power overhead from the additional
registers. For FuseKNA, the LUT-based AGU involves multi-
ple registers, leading to higher energy consumption. PIP is the
computation component in Bit-Pragmatic, which is capable of
skipping the ineffective bit-value computation to save energy.
However, it introduces extra shifters and decoders, which
contribute to the additional energy consumption.

Furthermore, all the aforementioned methods are unable to
avoid high bit-width accumulation, which is a major con-
tributor to energy consumption in INT4 computation. Con-
sequently, none of these designs achieve energy improvement
under the INT4 situation. Cambricon-C addresses this issue
by transforming both multiplication and accumulation into
a highly energy-efficient counting operation, resulting in net
gains.

VII. RELATED WORK

Bit serial computing is a computation approach that unrolls
the multiplicand into bit flows so that multiplications are
transformed into accumulations. Stripes [23] is capable of
processing bit strings of flexible length and enabled early-
stop when higher-significant bits to process are all zero. Bit-
pragmatic [1] and Bit-tactical [8] further improve by skip-
ping zero bits found inside the flow. Loom [36] focuses on
low-precision serial computing in source-limited situations.
ShapeShifter [4] explores bit-serial computing in the context of
fine-grain group quantization. However, these methods cannot
avoid the redundant use of high-cost hardware circuits when
computing the same values, which reveals the optimization
potential.

There are some studies that exploited the repetitive com-
putation in matrix multiplication. UCNN [19] reduces the
memory reads by exploiting the repetition of the weight
and activation. FuseKNA [40] captures both ineffectual and
repetitive additions in bit-serial computation by exploiting
bit repetition and bit sparsity in weights. Cambricon-P [17]

eliminates bit-level redundancy observed in inner-products by
a bit-indexed inner-product computing scheme. CARAT [34]
observed the trends towards batched low-precision data, and
transformed multiplications into additions to remove compu-
tations on repetitive values. However, none of these works can
achieve net improvement on very low-precision data such as
INT4, due to their relatively high architectural overheads.

VIII. CONCLUSION

We propose a novel 4-bit matrix computation unit
Cambricon-C SA via primitivization, that is, breaking down
MAC operations to l-ary successor functions, also known
as counting. We explored and selected the optimal design
of primitivized matrix multiplication unit, which is based on
techniques including Quarter Square Multiplication (QSM)
and ripple counters. Experimental results show that the pro-
posed Cambricon-C SA achieves up to 1.95x improvement
on energy efficiency over conventional MAC-based systolic
array. Applied to a complete accelerator, Cambricon-C ACC
achieves 1.13-1.25x energy efficiency improvement compared
with TPU over various DNN workloads.
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